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Functional magnetic resonance imaging (fMRI) and positron
emission tomography measure local changes in brain
hemodynamics induced by cognitive or perceptual tasks.
These measures have a uniformly high spatial resolution of
millimeters or less, but poor temporal resolution (about 1 s).
Conversely, electroencephalography (EEG) and
magnetoencephalography (MEG) measure instantaneously the
current flows induced by synaptic activity, but the accurate
localization of these current flows based on EEG and MEG
data alone remains an unsolved problem. Recently, techniques
have been developed that, in the context of brain anatomy
visualized with structural MRI, use both hemodynamic and
electromagnetic measures to arrive at estimates of brain
activation with high spatial and temporal resolution. These
methods range from simple juxtaposition to simultaneous
integrated techniques. Their application has already led to
advances in our understanding of the neural bases of
perception, attention, memory and language. Further advances
in multi-modality integration will require an improved
understanding of the coupling between the physiological
phenomena underlying the different signal modalities.
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Abbreviations
BOLD blood-oxygenation-level-dependent
ECD equivalent current dipole
EEG electroencephalography
ERP event-related potential
fMRI functional magnetic resonance imaging
MEG magnetoencephalography
MRI magnetic resonance imaging
NIRS near infrared spectroscopy
PET positron emission tomography

Introduction
The past decades have shown revolutionary changes in our
ability to non-invasively image human brain activity, with
current spatial and temporal resolutions meeting standards
previously reserved for invasive methods in animal mod-
els. In particular, the development of functional magnetic
resonance imaging (fMRI) has enabled imaging of changes
in blood oxygenation and perfusion, with a potential 
spatial resolution of a few hundred microns [1–4].
Similarly, advances in magnetoencephalography (MEG)
and high-density electroencephalography (EEG) have
enabled estimation of brain activity with a temporal 
resolution of the order of milliseconds [5–7,8•]. However,

each of these signal modalities is limited either in terms of
its temporal or spatial resolution. Hence, high-resolution
spatiotemporal imaging of brain activity requires integra-
tion of information from multiple signal modalities [9–11].

In this review, we will first discuss what is known about the
physical and physiological basis of the imaging signals and
the coupling between the processes underlying the differ-
ent techniques. Next, we will discuss various approaches
that have been proposed for integrating information across
multiple modalities. Finally, we will discuss future 
directions and remaining challenges in the field of 
multi-modality integration.

The physical and physiological basis of
imaging signals 
A major challenge for multi-modality integration results
from the fact that distinct physiological mechanisms
underlie the signal generation for different imaging 
modalities. Broadly speaking, the different imaging modal-
ities can be divided into three main categories: first,
EEG/MEG; second, optical imaging; and third,
fMRI/PET (positron emission tomography).

EEG and MEG signals
The techniques of EEG/MEG are unique in that the
observed signals are directly coupled to neuronal electrical
activity [7,8•,12]. More precisely, EEG and MEG reflect
the electric potential and magnetic field, respectively,
resulting primarily from synaptic trans-membrane currents
in neuronal dendrites [13]. These synaptic currents can be
modeled as sinks (inward currents) and sources (outward
currents) within a passive volume conductor made up of
neuronal tissues, cerebrospinal fluid, skull and scalp [12].
Thus, the transmission of electrical activity within the
brain to the EEG and MEG sensors is effectively instanta-
neous (limited only by the speed of light in tissue). The
propagation of such electric and magnetic fields through
the head, known as the bioelectric/magnetic forward prob-
lem, is relatively well understood, and efficient and
accurate algorithms exist to predict the EEG and MEG
signals [14]. Further incremental advances are still possi-
ble, especially incorporating information regarding
conductance anisotropy within white matter and preferen-
tial current shunts resulting from skull defects and sutures
[15,16•]. However, the so-called inverse problem of 
estimating the current sources and sinks on the basis of
EEG and/or MEG recordings alone is fundamentally 
ill-posed. That is, for any distribution of EEG and MEG
signals outside the head, there are infinitely many possible
configurations of current sources and sinks within the brain
that are consistent with those recordings — a principle
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originally pointed out by Helmholtz [17]. In order to 
disambiguate the inverse problem, it is therefore necessary
to impose additional constraints on the solution [9,18].

Optical signals
The physiological basis of the most common form of non-
invasive optical imaging, known as near infrared
spectroscopy (NIRS), is wavelength-specific absorption of
photons by oxygenated and deoxygenated hemoglobin
[19]. Thus, the contrast mechanism for NIRS signals is
closely related to that of intrinsic optical imaging of
exposed cortex using visible light [20]. The much lower
baseline absorption levels at the longer wavelengths used
in NIRS allow the light to travel further through skin, skull
and brain tissue, thus allowing non-invasive imaging of
hemodynamics, albeit with lower spatial resolution
[21–23]. To a first approximation, the hemodynamic
response to electrical activity can be modeled as the output
of a linear low-pass filter applied to the neuronal response,
effectively suppressing any signal power below 1 Hz [24].
Thus, although it is possible to sample optical signals quite
rapidly (>1 kHz), the effective temporal resolution is 
limited by the indirect nature of the coupling of the 
hemodynamic processes affecting the optical signals and
the underlying neuronal electrical activity [25].

It should be noted, however, that there is some evidence
that it may be possible to detect optical signals more
directly related to neuronal activation [26–29]. The physio-
logical basis of these event-related optical signals (EROS)
is not well understood, but may include cell swelling or
membrane polarization associated with neuronal activity,
resulting in local light-scattering changes [25]. Thus, opti-
cal imaging may provide insights into both the
electrophysiological (fast) and hemodynamic (slow)
processes underlying other brain imaging signals.
However, the spatial resolution afforded by optical 
methods alone is limited by the diffuse nature of photon
transport through tissue [21].

PET and fRMI signals
In contrast to the signal modalities mentioned above, PET
and fMRI provide unambiguous spatial localization of
activity with a relatively high spatial resolution. PET is
based on the measurement of paired photons that result
from annihilation of positrons emitted by radioactively
labeled markers [30]. PET has been used to measure
blood flow, glucose utilization, and receptor density
[31–33]. fMRI measures a blood-oxygenation-level-depen-
dent (BOLD) response which reflects a number of factors,
including the concentration of deoxygenated hemoglobin,
blood flow, and blood volume [34,35]. With fMRI, it is in
principle possible to image such hemodynamic changes
with a spatial resolution essentially limited only by the 
signal-to-noise ratio. However, inferences about neuronal
activity made on the basis of fMRI signals are again 
limited by the indirect nature of the coupling between the
observed signals and the underlying neuronal electrical

activity, with the achievable spatial and temporal resolu-
tion determined by the spatiotemporal point-spread
function of the hemodynamic response [36,37].

In order to combine electrophysiological signals with those
related to hemodynamics in a principled way, it is therefore
essential to take into account both the modality-specific
physics governing signal generation and propagation, and
the coupling between hemodynamics and neuronal electri-
cal activity. Although the physics of signal generation and
propagation is generally well understood, the physiological
coupling has not yet been well characterized. However,
there is a growing body of evidence for a strong spatial cor-
relation between local electrical activity and hemodynamic
signals; such evidence is based on comparisons between
maps obtained using voltage-sensitive dyes and using
intrinsic optical signals [38], as well as comparisons
between single-unit recordings and intrinsic optical signals
[39]. The intrinsic signal itself is closely co-localized with
the BOLD response [40]. Recent studies also indicate that
the amplitude of the hemodynamic response correlates
more or less linearly with electrophysiological measures,
based on comparisons between the fMRI BOLD response
and electrophysiological recordings in rat [41,42]. Further
research is needed to enable the precise, quantitative 
characterization of the spatiotemporal coupling between
electrophysiological and hemodynamic phenomena essen-
tial for optimal integration of information from different
imaging modalities (see below).

Approaches to multi-modality integration 
Efforts to arrive at a fuller understanding of neurocognitive
processes by use of fMRI/PET for localization and
MEG/EEG for timing have ranged from simple juxtaposi-
tion to truly integrated analyses. Simple juxtaposition has
the advantage that the analysis does not assume that the
signals in the different modalities are generated by the
same or similar neural generators; however, this assump-
tion is often implicit in the concurrent interpretation of the
multimodal results. Recent examples of this approach
include applications to attention [10], somatosensory acti-
vation [43], visual flow [44], novelty processing [45–47],
and emotional judgements [48].

Equivalent current dipole models
The most common approach to multi-modality integration is
to assume that the EEG/MEG signals are generated by a 
relatively small number of focal sources. Typically, both
hemodynamic and electromagnetic modalities are recorded
during the same task. The activation foci derived from PET
or fMRI are used as initial guesses (or ‘seeds’) for dipole 
locations, and the positions of the equivalent current dipoles
(ECDs) are adjusted using a non-linear fitting procedure
([18]; see also Figure 1a,b). The orientation and strength
over time of the ECDs can then be estimated using a simple
linear least-squares algorithm. In some cases, this technique
of ‘seeded dipoles’ can lead to significant conclusions regard-
ing neurocognitive processing mechanisms that cannot be
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obtained when using either hemodynamic or electromagnetic
techniques in isolation [49,50,51•,52•,53].

The power of dipole-seeding is in providing an objective
initial guess for the ECD locations, thus alleviating the
problem of local minima inherent in non-linear fitting pro-
cedures. There are, however, several potential problems
with this approach. Most cognitive tasks involve many 
spatially extensive brain areas. Even simple visual stimuli
activate a large number of distinct occipital, temporal, and
parietal cortical areas [54,55]. Cognitive tasks typically
involve an even more extensive network of sensory, motor,
and association areas, as revealed using fMRI [56] as well
as intracranial recordings [57–59]. The ‘seeded dipole’
approach requires the somewhat arbitrary partitioning of
these extended activation regions into discrete foci to be
represented by the individual ECDs. Furthermore, simu-
lation studies have shown that constraining all generators
of EEG and MEG to co-localize with the hemodynamic
activation foci may result in significant estimation error if
some of the ECD locations are incorrectly specified [60].

Continuous current estimates
These considerations have led some to explore continu-
ous, weighted estimates of activation over the entire
cortical surface using a continuous estimation approach
[9,61•,62•]. In this approach, the cortical surface is parti-
tioned into a large number of small patches, with each
patch represented by an ECD in the middle of the patch,
thus approximating any arbitrary spatial distribution of
synaptic currents within the cortex. Data from fMRI or
PET can then be used to spatially bias the EEG/MEG
inverse solution towards locations that are hemodynami-
cally active during a specific task [9,11]. In order to avoid
potential mismatch between the activity measured by the
different modalities, it is important to use identical exper-
imental designs and stimulus conditions for each. The
recent development of event-related analysis methods
enables the use of identical rapid, randomized experimental
designs with EEG/MEG and fMRI [63–65]. Using this
approach, it is possible to obtain continuous spatiotempo-
ral maps (or movies) of brain activity ([60]; see also
Figure 1c,d). A further refinement of this method is
achieved by normalizing the spatiotemporal estimates for

noise sensitivity, thus yielding dynamic statistical 
para-metric maps of brain activity (for further details, see
[8•]). The spatially continuous nature of such estimates
also allows for averaging of activity across individual 
subjects, after aligning the sulcal–gyral patterns across 
individuals ([8•,66]; see also Figure 1e).

It should be noted, however, that even when using hemo-
dynamic data to bias the inverse solution, some ambiguity
remains. One approach to quantifying this uncertainty is to
calculate the influence of activity at one location on the
estimated activity at another location, or so-called
‘crosstalk’ [60]. A more general approach, suggested by
Schmidt et al. [67], calls for an explicit characterization of
the space of possible solutions, by sampling the a posteriori
probability distribution given measurement data and 
a priori information.

Remaining challenges and future directions
In order to more accurately integrate EEG/MEG and fMRI,
a better understanding of the coupling between the signals
and the underlying neuronal activity is needed. Using fMRI
and/or optical imaging methods in humans and animals
along with electrophysiological recordings, it may be possi-
ble to obtain a more precise, quantitative model of this
coupling [68,69,70•,71]. Recordings using multi-contact
laminar electrodes and two-dimensional surface grids can
also provide a better understanding of the spatiotemporal
patterns of synaptic current flow in the cortex at microscopic
and mesoscopic scales [72•,73,74]. Because the observed
MEG/EEG signals are directly related to these synaptic 
current flows (the dipole moment is the first non-vanishing
term of the multipolar expansion of the laminar current
source density distribution), this information could lead to
greatly improved constraints on the spatiotemporal activity
estimates [7,74]. An important question that can be
addressed using such invasive recordings is the degree to
which the hemodynamic response is related to the phase-
locked (evoked) component of the electrophysiological
activity, or to the non-phase-locked component, which is
eliminated by standard averaging techniques [75,76].

A closely related question, essential to an appropriate
physiological interpretation of fMRI imaging results, is the

Figure 1 legend

Examples of multi-modality integration methods applied to a visual size-
judgment task, contrasting novel versus repeated words (see [8•] for
details on the experimental design and analysis). (a) MEG waveforms
recorded from 122 channels. The responses to novel and repeated words
are shown in blue and red, respectively. (b) Result of fitting a single ECD
to the repetition effect (novel minus repeated) at a latency of 540 ms post
stimulus-onset, using the method described in [7]. The dipole location is
indicated by the green arrow, superimposed on a contour plot of the
measured magnetic field. (c) The corresponding statistical parametric
map of cortical activity based on the anatomically constrained current
estimation method described in [8•]. The activity map is displayed on an

‘inflated’ representation of the left cortical hemisphere [9]. (d) Activity map
obtained by using both anatomical and fMRI-based constraints on the
estimates. Note the increased spatial detail revealed by the integration of
the fMRI constraint, relative to that obtained using (b) ECD fitting or (c)
anatomical constraints alone. (e) Time course estimates for neural activity
evoked by novel and repeated words at different cortical locations. The
activity estimates (using both anatomical and fMRI-based constraints)
were averaged across four subjects using a surface-based inter-subject
registration procedure [66]. The background image shows a statistical
parametric map based on inter-subject averaged fMRI activations in the
same task and subjects.



extent to which the BOLD effect reflects excitatory and/or
inhibitory neuronal activity. Early studies using
2-deoxyglucose in animal models showed that strong inhi-
bition could be associated with increased glucose uptake
[77]. However, indirect evidence has recently accumulated
suggesting that inhibition may not be associated with
increased local cerebral blood flow [78,79].

Ultimately, it should be possible to relate the observed electric/
magnetic, optical, and MRI signals to biophysical models of
neuronal circuitry. Because these imaging methods have a
finite resolution, the resulting signals reflect the integrated
activity of thousands or millions of neurons. This suggests
the use of spatially coarse-grained modeling approaches, in
which local populations of neurons are treated as statistical
ensembles [80,81]. Combining such modeling approaches
with the modality-specific forward solutions, specifying the
coupling between the imaging signals and the relevant bio-
physical parameters of the model at the appropriate spatial
scale, it may be possible to relate non-invasive imaging sig-
nals to information processing at the neuronal circuit level.
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