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Abstract: Both electroencephalography (EEG) and magnetoencephalography (MEG) are currently used to
localize brain activity. The accuracy of source localization depends on numerous factors, including the
specific inverse approach and source model, fundamental differences in EEG and MEG data, and the
accuracy of the volume conductor model of the head (i.e., the forward model). Using Monte Carlo
simulations, this study removes the effect of forward model errors and theoretically compares the use
of EEG alone, MEG alone, and combined EEG/MEG data sets for source localization. Here, we use a
linear estimation inverse approach with a distributed source model and a realistic forward head
model. We evaluated its accuracy using the crosstalk and point spread metrics. The crosstalk metric
for a specified location on the cortex describes the amount of activity incorrectly localized onto that
location from other locations. The point spread metric provides the complementary measure: for that
same location, the point spread describes the mis-localization of activity from that specified location
to other locations in the brain. We also propose and examine the utility of a “noise sensitivity
normalized” inverse operator. Given our particular forward and inverse models, our results show
that 1) surprisingly, EEG localization is more accurate than MEG localization for the same number of
sensors averaged over many source locations and orientations; 2) as expected, combining EEG with
MEG produces the best accuracy for the same total number of sensors; 3) the noise sensitivity
normalized inverse operator improves the spatial resolution relative to the standard linear estimation
operator; and 4) use of an a priori fMRI constraint universally reduces both crosstalk and point
spread. Hum. Brain Mapping 16:47– 62, 2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

The electromagnetic inverse problem for the human
brain is to determine the neural source distribution
that gives rise to external electromagnetic potentials
and fields, measured by electroencephalography
(EEG) and magnetoencephalography (MEG), respec-
tively. There is great interest in the assessment of the
relative accuracy of EEG and MEG for source localiza-
tion. The accuracy of a solution to the inverse problem
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using EEG and MEG data depends on numerous fac-
tors, however, including the particular inverse ap-
proach and source model, fundamental differences in
EEG and MEG data, and the accuracy of the volume
conductor model of the head (i.e., the forward model).

There has been some debate over the relative accu-
racy of EEG or MEG based source localization. Exper-
imental EEG studies using phantoms [Henderson et
al., 1975] and implanted electrodes in epilepsy pa-
tients [Smith et al., 1983, 1985] have been reported.
Those studies found a localization accuracy of 10 mm
for the phantoms to 20 mm in the patients. In compar-
ison, MEG studies reported localization accuracy of 3
mm in spherical phantoms [Barth et al., 1986; Hansen
et al., 1988; Janday and Swithenby, 1987; Yamamoto et
al., 1988] and 4–8 mm for skull phantoms [Barth et al.,
1986; Janday and Swithenby, 1987; Weinberger et al.,
1986; Yamamoto et al., 1988]. Based on these results, it
has been commonly assumed that MEG localization
accuracy is far superior to that of EEG.

There were theoretical reasons, however, to believe
that the MEG and EEG accuracy should be compara-
ble. In an attempt to directly address this controversy,
both MEG and EEG measurements were made while
generating current dipoles from implanted electrodes
in an epilepsy patient [Cohen et al., 1990]. A sinusoi-
dal stimulus waveform was used to remove the spike
artifacts that likely contributed to the poor EEG local-
ization performance of the previous EEG measure-
ments [Smith et al., 1983, 1985]. The average MEG and
EEG localization errors for dipoles with sufficiently
good signal to noise were found to be 8 mm and 10
mm, respectively [Cohen et al., 1990]. These results
suggested that MEG and EEG provide comparable
accuracy.

Unfortunately, further experimental data have not
necessarily clarified this issue of relative accuracy.
Phantom studies have reported localization accuracy
for EEG of 7–8 mm [Leahy et al., 1998] and for MEG of
2–4 mm [Gharib et al., 1995; Leahy et al., 1998; Men-
ninghaus et al., 1994]. The localization superiority of
MEG over EEG is less obvious in data from measure-
ments made in patients. Using data generated from
artificial current dipoles implanted in epilepsy pa-
tients the localization accuracy of EEG was 10–17 mm
[Cuffin et al., 1991; Cuffin, 1996; Krings et al., 1999]
with the best EEG accuracy in one patient of 1–4 mm
[Cuffin, 1996]. This is compared to a localization ac-
curacy of 17 mm for MEG measurements of artificial
dipoles generated from implanted subdural strips
[Balish et al., 1991]. Other studies have estimated ac-
curacy by comparing lesion data (e.g., tumor, epilep-
togenic focus) in epileptic patients with the non-inva-

sive location estimates from EEG [Diekmann et al.,
1998; Herrendorf et al., 2000; Ko et al., 1998; Krings et
al., 1998; Nakasato et al., 1994] or MEG [Diekmann et
al., 1998; Ko et al., 1998; Mikuni et al., 1997; Nakasato
et al., 1994; Sutherling et al., 1987, 1988a,b; Stefan et al.,
1994; Tiihonen et al., 1990]. Similar to the results of the
artificial current dipoles, the EEG and MEG accuracy
were comparable (ranging from 10–20 mm).

Generally, in experimental studies it is difficult to
separate the effect of errors in the head model from
localization errors due to inherent differences between
EEG and MEG. Specifically, there are fundamental
differences between the forward solution accuracy re-
quired by EEG and MEG, with MEG requiring a sim-
pler model [Hamalainen and Sarvas, 1989; Meijs et al.,
1987, 1989]. Therefore, one would expect better accu-
racy for experimental MEG data using the more accu-
rate MEG head model. Through the use of modeling
studies, it is possible to examine the relative accuracy
of EEG and MEG by using the same forward solution
to generate both the synthetic external EEG/MEG
measurements and the resulting inverse solution. In
other words, modeling studies can examine EEG and
MEG localization accuracy unbiased by possible inac-
curacies in the forward model that may differentially
affect localization of experimental EEG or MEG mea-
surements. Even the modeling studies, however, have
been equivocal. Some modeling work found MEG to
be more accurate than EEG [Murro et al., 1995; Stok,
1987], whereas others found EEG and MEG accuracy
to be comparable [Malmivuo et al., 1997], or EEG
accuracy better than MEG [Mosher et al., 1993; Pas-
cual-Marqui and Biscay-Lirio, 1993].

Clearly, the data from phantoms, patients, and the-
oretical studies give conflicting evidence for the rela-
tive accuracy of EEG and MEG. There are numerous
confounding factors in the interpretation of all of these
data. For example, experimental measurements in
phantoms and living human heads may reflect the
higher accuracy of the MEG forward solution, mea-
surement errors, or differences in signal to noise. Also,
many of the modeling studies used spherical head
models with differences between EEG and MEG sen-
sor sampling.

Here, we specifically examined inherent differences
in EEG and MEG data by using a single realistic head
model for the both the forward and inverse computa-
tions. In other words, we have removed the effect of
forward model errors from our analysis. For these
model studies, we used 1) a linear estimation tech-
nique; 2) a distributed source model; 3) a realistic
forward head model; and 4) similar EEG and MEG
sensor placement. In addition, we present a noise sen-
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sitivity normalized inverse operator that is based on
the linear estimation approach. Monte Carlo modeling
studies (sampling over numerous source locations,
size and orientations) were used to determine the
theoretical limits (i.e., assuming no errors in the head
model) of EEG and MEG localization using our par-
ticular source model and inverse procedure. Localiza-
tion estimates were computed using MEG or EEG
data, both separately and combined. The effect of sen-
sor sampling density (i.e., number of sensors) was also
examined. In addition, as it is becoming more com-
mon to utilize other spatial information, such as func-
tional magnetic resonance imaging (fMRI), we also
modeled the effect of fMRI spatial constraints on the
relative accuracy of EEG and MEG source localization
[Liu et al., 1998].

Previous ECD localization accuracy studies typi-
cally report error in millimeters between known and
modeled dipole locations. Unfortunately, it is difficult
to characterize localization accuracy in terms of a dis-
tance error for the linear estimation approach using a
distributed source model because of the extended na-
ture of the localization estimates. It is more appropri-
ate to define localization accuracy and resolution in
terms of metrics that include the spatial aspect of the
extended source distributions. Therefore, we quanti-
fied localization accuracy using a crosstalk metric [Liu
et al., 1998] and a point spread metric that are speci-
fied by the resolution matrix [Grave de Peralta Me-
nendez et al., 1996, 1997; Grave de Peralta-Menendez
and Gonzalez-Andino, 1998; Lutkenhoner and Grave
de Peralta Menendez, 1997; Menke, 1989]. These two
metrics provide complementary accuracy information.
They specify from where and to where activity is in-
correctly localized. The crosstalk metric for a specified
location on the cortex describes the amount of activity
incorrectly localized onto that location from other lo-
cations. The point spread metric provides the comple-
mentary measure: for that same location, the point
spread describes the mis-localization of activity from
that specified location to other locations in the brain.
Lower crosstalk and point spread values indicate
higher localization accuracy.

The crosstalk and point spread metrics are also use-
ful beyond the context of these modeling studies.
When analyzing experimental data, one can calculate
crosstalk and point spread maps that are only based
upon the inverse operator and forward solution, and
are independent of the actual experimental data. For a
given estimated distribution of cortical activity, these
maps can aid in determining the confidence of the
spatiotemporal estimates. For example, if one were to
estimate the activity at a location that had a focal

crosstalk and point spread map, one would be more
confident that this estimate was, in fact, correct.

METHODS

Forward solution

The realistic boundary element method (BEM) was
adapted for calculating both the EEG and MEG for-
ward solutions [de Munck, 1992; Oostendorp and van
Oosterom, 1989]. Both forward solution computations
require the locations of all possible sources, the sensor
locations, and the sensor orientations (for MEG only).
For this analysis, we restricted all sources to be within
the cortex of the brain. Therefore, by construction, we
did not analyze non-cortical structures, such as the
cerebellum and basal ganglia. Each possible cortical
source was represented by a current dipole oriented
normal to the cortical surface, i.e., both the location and
orientation were constrained by the cortical surface.

The computation of the MEG forward solution has
been shown to only require the inner skull boundary
to achieve an accurate solution [Hamalainen and Sar-
vas, 1989; Meijs et al., 1987, 1989]. The EEG forward
solution computation requires the specification of
boundaries between brain and skull, skull and scalp,
scalp and air, and the relative conductivities of each of
those regions. We assumed conductivity ratios of
1:0.0125:1 for brain:skull:scalp [Cuffin, 1990].

The conductivity boundaries required for computa-
tion of the EEG and MEG forward solutions were
automatically reconstructed from a high-resolution
T1-weighted 3D MRI using our previously described
technique [Dale et al., 1999; Dale and Sereno, 1993;
Fischl et al., 1999]. The realistic surfaces used in our
calculations are shown in Figure 1. Each of the con-
ductivity boundaries was represented by 642 vertices.
The cortical surface was initially tessellated with about
150,000 vertices per hemisphere. For the inverse com-
putation, the cortical surface was decimated to ap-
proximately 3,000 dipoles per hemisphere, which is
roughly equivalent to 1 dipole every 10 mm along the
cortical surface.

The computation of the forward solution also re-
quires specification of the EEG electrode or MEG sen-
sor locations. We began with a realistic sensor descrip-
tion of 122 MEG sensors [Knuutila et al., 1993], which
is the same configuration that was used in our previ-
ous modeling study [Liu et al., 1998]. The 122 MEG
sensors are placed at 61 discrete locations, with two
orthogonal planar gradiometers at each location. The
61 locations were subsampled to 30 locations. Both the
61 and 30 locations were distributed over the entire
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head. For the two sets of locations, we created three
types of MEG sensor configurations: magnetometer,
radial gradiometer, and two orthogonal planar gradi-
ometers. To minimize effects from sampling differ-
ences, the EEG sensor locations were determined by
projecting the 61 and 30 MEG locations onto the outer
skin. We also modeled the effects of using various
combinations of MEG and EEG sensor configurations.
The MEG sensor locations are shown in Figure 2,
overlaid on an axial maximum intensity projection of
the T1-weighted MRI. The EEG sensor locations are
shown similarly in Figure 3.

For the combined EEG/MEG sensor configurations,
the gain matrix (A) contains both the EEG and MEG
forward solutions that were calculated separately. The
dimensions of the combined gain matrix are [(number
of EEG sensors plus number of MEG sensors) � (num-
ber of dipoles)].

Inverse operator

The linear inverse operator used here can be de-
rived in various ways. In the appendix, we detail four
different derivations: 1) minimization of expected er-
ror [Dale and Sereno, 1993]; 2) Bayesian formulation
[Gelb, 1974; Phillips et al., 1997a,b]; 3) Tichonov reg-
ularization [Tichonov and Arsenin, 1977]; and 4) gen-
eralized Wiener filtering [Deutsch, 1965; Smith, 1992;
Sekihara and Scholz, 1995, 1996]. Assuming appropri-
ate initial conditions, all derivations result in the fol-
lowing (or equivalent) expression for the linear in-
verse operator:

W � RAT�ARAT � C� � 1. (1)

Crosstalk metric

To quantify one aspect of the accuracy of the linear
estimation technique, we used a crosstalk metric [Liu
et al., 1998], which is similar to the averaging kernel of
the Backus-Gilbert method [Backus and Gilbert, 1970].
The crosstalk metric describes the sensitivity of the
estimate at a specified location to activity at other
locations. A location with lower crosstalk is less biased
by activity at other locations, and provides a more
accurate estimate for activity at that location. A more
formal description of the crosstalk metric follows.

The estimated source strength (ŝi) at each location i
can be written as a weighted sum of the actual source
strengths at all locations, plus a noise contribution.

Figure 1.
EEG/MEG forward solution surfaces. The top figures show the
three head surfaces used in the calculation of the forward solu-
tions. The bottom figures are the left and right cortical surfaces
used to determine the locations and orientations of the sources.
The MEG forward solution was computed using only the inner
skull surface, whereas the EEG forward solution requires all three
boundaries.

Figure 2.
MEG sensor locations. Two different sets of locations.

Figure 3.
EEG sensor locations. Two different sets of locations.

� Liu et al. �

� 50 �



This is due to the linearity of both the forward solution
and this inverse operator. More formally,

ŝi � wix (2)

� wi�Ãs � n� (3)

� wi� �
j

ãjsj � n� (4)

� �
j

�wiãj�sj � win (5)

where Wi is the ith row of W, and ãj is the jth column of
Ã (i.e., the “true” lead field including orientation in-
formation at location j). Depending on the particular
type of mis-specification being examined through
model studies, A (the forward model used in the
calculation of W) and Ã (the forward model with no
errors) may or may not be equivalent. Note, that when
determining the crosstalk metric for experimental
data, A and Ã will always be the same. The first term
in equation (5) is the sum of the activity (sj) at every
location j, weighted by the scalar wiãj. The second
term reflects the noise contribution to the estimated
activity at location i.

An explicit expression for the relative sensitivity of
the estimate for a given location (i) to activity coming
from other locations (j) is desired. A crosstalk metric
(�) is defined as follows:

�ij
2 �

��WÃ�ij�2

��WÃ�ii�2 �
�wiãj�2

�wiãi�2 (6)

where WÃ is the resolution matrix [Grave de Peralta
Menendez et al., 1996, 1997; Grave de Peralta-Menen-
dez and Gonzalez-Andino, 1998; Lutkenhoner and
Grave de Peralta Menendez, 1997; Menke, 1989].

By comparing equations (5) and (6), one can see that
the crosstalk metric �ij describes the sensitivity (or
weighting) of the estimate at location i to activity at
location j relative to activity at location i. A crosstalk
value of 0% means that the estimated activity at loca-
tion i is completely insensitive to activity at location j.
A crosstalk value of 100% means that the estimated
activity at location i is equally sensitive to activity at
locations i and j. For any particular location, the
crosstalk from all other locations can be calculated. For
some particular location i, this computation corre-
sponds to the ith row of the resolution matrix (WA).
We refer to this spatial representation of the crosstalk

metric as the “crosstalk map” for the specified loca-
tion.

Both the crosstalk metric and the crosstalk map are
specified for a given source. To simplify the represen-
tation of the crosstalk at all locations, we define an
average crosstalk map (ACM). For each location on
the cortical surface we compute the average of the
crosstalks between the specified location (i) location
and all other locations (j) on the surface:

ACM �

�
j

�ij
2

j . (7)

Point spread metric

Closely related to the crosstalk metric is the point
spread metric. The point spread for a location i de-
scribes the sensitivity of the estimates at other loca-
tions j to activity at location i. A location with lower
point spread has a smaller spatial extent. The point
spread metric (�) is defined as:

�ij
2 �

��WÃ�ji�2

��WÃ�ii�2 �
�wjãi�2

�wiãi�2 (8)

where WÃ is the resolution matrix. The point spread
map, more commonly known as the point spread
function (PSF), for a given location i corresponds to
the ith column of the crosstalk matrix (WA). Similar to
the average crosstalk map, we define the average PSF
maps (APSF). For each location we average the point
spread between the specified location (i) location and
all other locations (j) on the surface:

APSFi �

�
j

�ij
2

j . (9)

One can see that crosstalk and point spread are closely
related. The crosstalk map and the point spread map
correspond to the rows and columns, respectively, of
the resolution matrix WA. In the linear estimation
framework examined up to this point, we can show
that the resolution matrix is symmetric, and therefore
the crosstalk map and the PSF for a given location are
equivalent. The resolution matrix is given by:

WA � RAT�ARAT � C� � 1A. (10)

The transpose of the resolution matrix is:
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�WA�T � �RAT�ARAT � C� � 1A�T (11)

� AT��ARAT � C� � 1�TART. (12)

The term inside the parentheses is also symmetric
(since the noise covariance matrix, C, is symmetric):

�ARAT � C�T � ARTAT � CT � ARAT � C. (13)

The source covariance matrix (R) is also symmetric, so
we can rewrite equation (12):

� AT�ARAT � C� � 1AR. (14)

Because the term, AT(ARAT � C)�1A, and R are both
symmetric, we have:

AT�ARAT � C)�1ART � RAT�ARAT � C� � 1A (15)

thus, demonstrating that the resolution matrix is sym-
metric.

The relationship between the crosstalk metric and
the point spread metric can be more easily seen graph-
ically (Fig. 4). The location of interest (i.e., location i) is
marked in green. The arrows indicate the “direction”
of mis-specification, or where activity is mis-localized.
The crosstalk metric describes the activity from other
locations that is mis-localized onto the location of
interest (arrows point towards location i). Conversely,
the point spread metric describes activity that is mis-

localized from location i (arrows point away from
location i).

Given that the crosstalk map and the point spread
function are equivalent for the linear estimation oper-
ator, our discussion applies equally to both. Various
suggested improvements to the linear estimation tech-
nique, however, will result in a non-symmetric reso-
lution matrix. For example, the Backus-Gilbert method
[Backus and Gilbert, 1970; Grave de Peralta Menendez
et al., 1996; Grave de Peralta Menendez and Gonzalez
Andino, 1999] that explicitly minimizes the crosstalk,
will result in some sort of tradeoff with the point
spread function. Our noise normalized linear inverse,
presented below, also yields a non-symmetric resolu-
tion matrix.

Noise sensitivity normalization

Similar to the statistical analysis of functional MRI,
we are primarily interested in locations whose activity
(i.e., “signal”) is significantly larger than the noise.
Therefore, we propose to normalize each row of the
inverse operator based on the noise sensitivity of the
inverse operator at that location. Locations that have
low noise sensitivity are given a larger weighting than
those locations with high noise sensitivity. We can
estimate the noise sensitivity by projecting the noise
covariance estimate into the inverse operator. The new
inverse operator will be pre-multiplied by a diagonal
noise sensitivity matrix (D), square in the number of
dipoles, where each diagonal element is:

Figure 4.
Mis-localized activity specified by the Crosstalk and the Point Spread metrics. The arrows indicate the “direction” of mis-specification.
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Dii �
1

diagi��WCWT�
. (16)

The noise sensitivity normalized inverse is now:

Wns_norm � DW. (17)

The resulting activity estimates will now resemble an
F-statistic, instead of an activation power [Dale et al.,
2000]. Our new activity estimates, ŝ i

ns_norm, at each
location i, which we refer to as “noise sensitivity nor-
malized estimates”, are:

ŝ i
ns_norm � �Wns_normx�i � �DWx�i � ��WxxTWT�i

�WCWT�i
. �18�

For these model studies, we have assumed Gaussian,
white noise, so the noise covariance matrix (C) is a
multiple of the identity matrix. In this particular case,
this noise sensitivity normalization corresponds to
normalizing the rows of the inverse operator by the
norm of the row:

Wi
ns_norm �

Wi
orig

�Wi
orig� . (19)

We note that because we are scaling each row of W by
a single value, the rows of the resolution matrix are
simply scaled by that same value. Therefore our
crosstalk metric remains unchanged with this noise
sensitivity normalization. The PSF, however, will be
affected since the scaling of each column of W is not
uniform.

Monte Carlo simulations

As pointed out by numerous authors [e.g., Fuchs et
al., 1998; Hari et al., 1988; Liu et al., 1998; Murro et al.,
1995; Supek and Aine, 1993], localization accuracy is
highly dependent on the location of the source. There-
fore, to better approximate realistic data which can
occur anywhere in the brain, our simulations use a
large random sampling of source locations to provide
an average estimate of localization accuracy.

Either 5, 10, or 20 sources were randomly located on
the cortical surface, each with varying volumetric ex-
tent (1 cm or 2 cm diameter). The random selection
ensures no systemic location bias in these model stud-
ies. The numbers and extents of sources were chosen
to represent experimentally realistic regions of brain
activity that might be seen with a given cognitive task.

The diagonal elements of R (the a priori source covari-
ance estimates Rii � 	i

2) were set to 1 or 0.01. These
values correspond to fMRI weightings of 0% (equiva-
lent to minimum norm) and 90%, respectively. Previ-
ous modeling studies suggest that an fMRI weighting
of 90% represents a reasonable compromise between
separation of activity from correctly localized sources
(by fMRI) and minimization of error due to missing
fMRI sources [Liu et al., 1998].

We made no a priori assumptions about source
correlation. Therefore, the off-diagonal elements of R
were set to zero, i.e., Rij � 0 for i 
 j. It should be noted
that this does not force the sources to be uncorrelated
or orthogonal in time. Noise was assumed to be addi-
tive, Gaussian, uniform, and spatially uncorrelated.

More precisely, C � I
tr(ARAT)/n

SNR2 , where I is the iden-

tity matrix, tr is the trace of a square matrix, SNR is the
assumed rms signal-to-noise ratio, and n is the num-
ber of sensors. Here, a conservative SNR of 10 was
assumed.

In these model studies, the number of MEG sensors
was assumed to be either 30, 60 (30 locations with two
orthogonal planar gradiometers), 61 or 122 (61 loca-
tions with two orthogonal planar gradiometers), with
the smaller numbers of sensors subsampled from the
complete 122 channel description to still give full head
coverage at a sparser sampling. For the EEG sensors,
30 or 61 sensors were distributed over the entire head.
To minimize any sampling differences between MEG
and EEG, the locations of the EEG sensors were based
on the corresponding MEG sensor configuration pro-
jected down onto the outer skin surface. In addition,
all combinations of MEG and EEG sensors were stud-
ied. For each of the sensor configurations, the crosstalk
was averaged over the different number and extent of
sources.

For comparison of the noise sensitivity normalized
inverse, the average crosstalk map and the average
PSF were computed at each source location. No fMRI
weighting was used, thus removing the need for
Monte Carlo simulations.

One additional set of modeling studies was per-
formed here. In computing the EEG forward solution,
conductivity ratios, not exact conductivities, of the
different head regions were used. If the actual conduc-
tivities differ from the assumed conductivities, even
though the conductivity ratios are correctly estimated,
then the computed source activities using EEG will
not be in the same units as the computed source
activities using MEG. This effectively introduces a
scaling factor between the EEG and MEG forward
solutions [Fuchs et al., 1998]. We modeled the effect of
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mis-estimating the scaling factor between EEG and
MEG forward solutions (corresponding to the mis-
estimate of the actual conductivities) from 0.2–5. The
scaling factor was incorporated into the combined
EEG/MEG forward solution by multiplying those
rows corresponding to EEG sensors by the factor. This
scaled gain matrix was used in the computation of the
inverse operator. The correct gain matrix (i.e., a scaling
factor of 1) was used for the crosstalk metric compu-
tation. More explicitly, if we represent the scaled for-
ward solution by As and the true forward solution by
Ã, the crosstalk matrix is given by:

WsÃ � RAs
T�AsRAs

T � C� � 1Ã. (20)

For this portion of the model studies, we assumed 30
EEG electrodes and 30 MEG radial gradiometers, and
an fMRI weighting of 90%.

RESULTS

Figures 5 and 8 show the average crosstalk vs. sen-
sor configuration. No fMRI weighting (equivalent to
minimum norm) was used in Figure 5. An fMRI
weighting of 90% was used in Figure 8. As a reminder,
the crosstalk metric specifies the amount of variance
from another location that is incorrectly mapped to the
location of interest.

Increasing the number of sensors for both MEG and
EEG decreases the average crosstalk (i.e., improves
average localization accuracy). There is little differ-
ence between equal numbers of magnetometers, radial
gradiometers or planar gradiometers. The average
crosstalk for the EEG configurations is smaller than
that for the same number of MEG sensors. Perhaps
most importantly, there is a large decrease in crosstalk
with the combined sensor configurations.

The average crosstalk map and average PSF map for
three different sensor configurations (60 MEG planar
gradiometers, 61 EEG sensors and the combined 61
EEG/ 60 MEG sensors) are shown on the inflated
cortical surface in Figure 6. No fMRI weighting was
used. As expected, the crosstalk and PSF maps are
equivalent. For the same number of sensors, EEG
(7.7% � 6.1%) has lower average crosstalk than MEG
(17.3% � 37.0%). This difference is largely due to the
very large crosstalk for MEG measurements of the
deep or radial sources. The combined EEG/MEG
sensor configuration provides the lowest average
crosstalk. There is large spatial variability in the
crosstalk map, especially for the MEG sensors, dem-
onstrating that the crosstalk map and point spread are
highly dependent of the cortical location of the source.
For both MEG and EEG, the crosstalk is larger in the
depths of the sulci than on the gyri, with the largest
crosstalk in the insula, inferior frontal and superior
temporal cortex. The MEG average crosstalk maps
also demonstrate the orientation dependence of MEG.
For MEG, source locations on the crowns of gyri that
are largely radial in orientation have very high aver-
age crosstalk (e.g., see white arrow).

The average crosstalk and average PSF maps for
three different sensor configurations (60 MEG planar
gradiometers, 61 EEG sensors and the combined 61
EEG/ 60 MEG sensors) using the noise sensitivity
normalized inverse operator are shown in Figure 7.
No fMRI weighting was used. The crosstalk maps are
unchanged from Figure 6. The PSF maps are greatly
different, however, especially for 60 MEG planar gra-
diometers alone. There is greater spatial uniformity
and no PSFs are greater than 20% with the noise
sensitivity normalized inverse. The average PSF over
all locations is lower for the normalized inverse, with
the largest gain occurring for MEG sensors alone (70%
lower).

The general trend of the results using fMRI weight-
ing (Fig. 8) is similar to that without fMRI weighting
(Figure 5). The addition of fMRI information results in
lower crosstalk for all sensor configurations. However,
it should be noted that this improvement is for those
sources that are correctly specified by fMRI. In cases

Figure 5.
Average crosstalk vs. sensor number; no fMRI weighting. The
sensor configuration consisted of 30 magnetometers (30m), 30
radial gradiometers (30r), 60 orthogonal planar gradiometers
(30p), 61 magnetometers (61m), 61 radial gradiometers (61r), 122
orthogonal planar gradiometers (61p), 30 EEG sensors, 61 EEG
sensors, and all possible combinations of MEG and EEG sensors.
The crosstalk values were averaged over a range of source num-
ber (5, 10, or 20 sources) and extent (1 cm or 2 cm in diameter).
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where fMRI has mis-specified the source, crosstalk
increases relative to the fMRI unweighted solution
shown in Figure 5 [Liu et al., 1998]. Increasing the
number of sensors, regardless of the type, improves
localization accuracy. The localization accuracy for the
same number of sensors is only slightly better with
EEG. The average crosstalk for the combined EEG and
MEG sensors is lower than either EEG or MEG alone,
with 61 EEG and 122 MEG (61p) sensors providing the
lowest crosstalk of the different sensor configurations
studied.

The observed improvement in localization accuracy
obtained by combining EEG and MEG data assumes
that one knows the proper scaling factor between the
two forward solutions. If this scaling factor is un-
known, additional errors can arise. Figure 9 demon-
strates the effect of mis-specifying the EEG/MEG scal-
ing factor.

An increasing discrepancy between the EEG and
MEG forward solution (modeled by a deviation of the
EEG/MEG scaling factor from unity) results in in-
creasingly larger average crosstalk.

DISCUSSION

Assuming equal SNR, changes in the sensor config-
uration produce similar results independent of the use
of fMRI weighting. Not surprisingly, increasing sensor
number, regardless of the type of MEG sensor, results
in improved localization accuracy. Comparing MEG
to EEG for the same number of sensors, we see that, on
average, EEG is superior to MEG. In fact, when using
no fMRI weighting, 30 EEG sensors (16.1%) are com-
parable to 61 MEG magnetometers (17.6%) or radial
gradiometers (17.4%). The superiority of EEG over
MEG results from the greater depth and orientation
sensitivity of MEG. For EEG sensors alone, there are
no average crosstalk values greater than 40%. In com-
parison, for 60 MEG planar gradiometers, 12% of the
sources have average crosstalk values greater than
40%. These sources fall into two categories: deep cor-
tical sources and sources that are largely radial in
orientation. Although the fMRI weighting constraint
reduces crosstalk for properly detected sources in all
cases, the relative difference between EEG and MEG

Figure 6.
Average crosstalk map and av-
erage point spread function
map at each location for three
different sensor configurations.
The average crosstalk or point
spread for each location is en-
coded in color. Full red equals
5% and full yellow equals 25%
crosstalk or point spread. Be-
low each map is the histogram
of the number of dipoles with
average crosstalk/point spread
values within a 5% bin. No fMRI
weighting was used.
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are less pronounced with fMRI weighting. When in-
cluding the fMRI constraint, the crosstalk is largely
defined by the spatial priors provided by the fMRI.
Subsequently, the inverse operator is less sensitive to
depth and orientation.

The lowest crosstalk is achieved by combining EEG
and MEG sensors. Using 61 EEG sensors and 122 MEG
planar gradiometers together results in one-third of
the average crosstalk of 30 MEG sensors alone. The
largest reductions in crosstalk (a decrease of �50% in
crosstalk) are seen when going from 0 to 30 EEG
sensors in addition to any number of MEG sensors.
The next largest decreases in crosstalk occur with the
addition of 30 MEG sensors (magnetometers or radial
gradiometers) to any number of EEG sensors. Once
both EEG and MEG sensors are included, there are
only small decreases in crosstalk. This last result sug-
gests an important experimental consideration. In-
creasing MEG sensors does not increase the setup time
for the experiment, whereas the placement of numer-
ous EEG sensors can be extremely time consuming.
Significant gains in localization accuracy can be
achieved simply by placing a small number of EEG
channels to be recorded simultaneously with a large
number of MEG channels. Clearly a combined EEG/
MEG approach is superior to using either technique
independently, regardless of whether fMRI informa-
tion is included.

Our results compared the average crosstalk to the
average PSF over all locations. Using the standard
linear estimation inverse operator, the crosstalk map
and the PSF are equivalent (i.e., the resolution matrix
is symmetric). This equivalence will not necessarily be
true when using other inverse operators. In fact, the
crosstalk map and PSF reflect two different aspects of
localization accuracy. The crosstalk metric for a spec-
ified location on the cortex describes the amount of
activity incorrectly localized onto that location from
other locations, whereas the point spread metric pro-
vides the complementary measure: for that same loca-
tion, the point spread describes the mis-localization of
activity from that specified location to other locations
in the brain. If the crosstalk map for a location showed
only a single point at that same location, i.e., a delta
function, the estimate at that location would com-
pletely reflect activity at that location. Conversely, if
the PSF for a given location was a single point at that
same location, a point source would be spatially local-
ized as a point source.

Typically, neither the crosstalk map nor the PSF
would be a map with only a single point. Importantly,
the spatial extent of these two maps can be used to
determine the confidence of the estimates. If there are
other active areas that overlap with the crosstalk map
for a given location, the activity at that location is
affected by those other areas. In that situation, the

Figure 7.
Average crosstalk and average
PSF maps for the noise sensi-
tivity normalized inverse oper-
ator. The average crosstalk or
point spread for each location
is encoded in color. Full red
equals 5% and full yellow equals
25% crosstalk or point spread.
Below each map is the histo-
gram of the number of dipoles
with average crosstalk/point
spread values within a 5% bin.
No fMRI weighting was used.
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estimate for that location will not only reflect activity
from that location, but will represent a weighted sum
of all the activity within the region defined by the
crosstalk map. If, on the other hand, there are no other
active areas within a crosstalk map, one can be confi-
dent that the estimated activity reflects the true activ-
ity. The PSF is easier to interpret than the crosstalk
map. The PSF for a location defines the spatial extent
of activity that would be localized for a point source at
that location. Any activity in the region defined by the
PSF cannot be separated from activity at the given
location.

Although the noise sensitivity normalized inverse
has no effect on the crosstalk map, there is significant
improvement in the point spread function, especially
for deep and radial sources for MEG sensors alone.
Therefore, we would expect to have more focal
sources with similar temporal accuracy as the unnor-
malized inverse operator. Note, that there is a disad-
vantage to using the noise sensitivity normalized in-
verse operator. Because each location has a different
normalization factor, direct amplitude comparisons
between the timecourses of different locations cannot
be made. One can, however, still make amplitude
comparisons for a given location across different task
paradigms.

Many empirical experiments are now collecting
EEG and MEG data simultaneously. Both types of
data are acquired in the hope of producing more ac-

curate source localization estimates. To maximally use
this combined information, the scaling factor between
the two different types of data must be known. Be-
cause the EEG forward solution can be calculated
using conductivity ratios instead of actual conductiv-
ities, there can be a discrepancy between EEG and
MEG with respect to the units of the estimated source
strengths. Thus, when combining the two techniques,
error is introduced if the EEG/MEG forward solution
scaling factor is mis-estimated. We find that even if the
conductivity ratios are known, the actual scaling fac-
tor between EEG and MEG needs to be known within
a factor of 2. If the scaling factor is mis-estimated by a
factor of 0.2 (or 5), the average crosstalk is over twice
as large as when the scaling factor is correctly deter-
mined.

Certain caveats apply to these results. First, to spe-
cifically evaluate the inverse procedure, we assumed
that there were no errors in the EEG and MEG for-
ward solutions. Currently, the MEG forward solution
is more accurate than the EEG forward solution, ow-
ing to the fact that the MEG forward solution requires
only the inner skull surface and does not depend on
the conductivities of the various tissue types in the
brain [Hamalainen and Sarvas, 1989; Meijs et al., 1987,
1989]. If errors in the head model are included, which
is likely to be the case with the currently available
head models, the EEG accuracy will worsen relative to
the MEG accuracy. It is likely, however, that future

Figure 8.
Average crosstalk vs. sensor number; 90% fMRI weighting. The
sensor configuration consisted of 30 magnetometers (30m), 30
radial gradiometers (30r), 60 orthogonal planar gradiometers
(30p), 61 magnetometers (61m), 61 radial gradiometers (61r), 122
orthogonal planar gradiometers (61p), 30 EEG sensors, 61 EEG
sensors, and all possible combinations of MEG and EEG sensors.
The crosstalk values were averaged over a range of source num-
ber (5, 10, or 20 sources) and extent (1 cm or 2 cm in diameter).

Figure 9.
Average crosstalk vs. EEG/MEG forward solution scaling. A sensor
configuration of 30 EEG sensors and 30 MEG radial gradiometers
was used. An fMRI weighting of 90% was used. The scaling factor
between the EEG and MEG forward solutions was varied from
0.2–5. A scaling factor of 1 assumes no error in the scaling
between EEG and MEG forward solutions. The crosstalk values
were averaged over a range of source number (5, 10, or 20
sources) and extent (1 cm or 2 cm in diameter).
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work will greatly increase the accuracy of the EEG
head model, making this first caveat less relevant.
Second, we also assumed equal signal-to-noise ratios
for all sensor configurations. In cases where the SNR
differs (such as magnetometers versus radial gradio-
meters), localization using the configuration with the
best SNR will result in greater accuracy than is shown
here. Finally, for the randomly placed sources, we did
not restrict the source orientations (i.e., radial and
tangential sources were equally probably in the Monte
Carlo simulations). As discussed above, since MEG
poorly localizes radial versus tangential sources, some
of the predicted superiority of EEG is due to this
orientation dependence of MEG.

Recently, other simulations examining the combina-
tion of EEG and MEG measurements were presented
[Fuchs et al., 1998]. Fuchs et al. [1998] used a single
equivalent current dipole (ECD) inverse approach to
localize test dipoles in a spherical three-shell head
model. Because these authors used a different forward
model, inverse method and source model, our results
are not directly comparable. Similar results, however,
were obtained with respect to two findings: 1) increas-
ing sensor number decreases localization errors and 2)
a combination of EEG and MEG is better than either
modality alone.

Overall, these results demonstrate that both EEG
and MEG are useful technologies for the localization
of brain activity. The lowest crosstalk was achieved by
combining EEG and MEG data, providing motivation
for further development of both methodologies. A
large reduction in the PSF (i.e., increase in spatial
accuracy) was provided by using the noise sensitivity
normalized inverse operator. More accurate head
models will improve localization accuracy, but will
not eliminate the need for the acquisition of simulta-
neous EEG and MEG information.
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APPENDIX: INVERSE OPERATOR
DERIVATIONS

The linear inverse operator that we use here can be
derived in various ways. We detail four different der-
ivations: 1) minimization of expected error [Dale and
Sereno, 1993], 2) Bayesian formulation [Gelb, 1974;
Phillips et al., 1997a,b], 3) Tichonov regularization
[Tichonov and Arsenin, 1977], and 4) generalized Wie-
ner filtering [Deutsch, 1965; Smith, 1992; Sekihara and
Scholz, 1995, 1996]. All derivations arrive at equiva-
lent inverse operators, given certain initial conditions.

The minimization of expected error begins with a
set of measurements

x � As � n (21)

where x is the measurement vector, A is the gain
matrix, s is the strength of each dipole component, and
n is the noise vector. One would like to calculate a
linear inverse operator W that minimizes the expected
difference between the estimated and the correct
source solution. The expected error can be defined as:

ErrW � �Wx � s�2�. (22)

Here we assume that both n and s are normally dis-
tributed with zero mean. Using their corresponding
covariance matrices C and R, the expected error can be
rewritten as:

ErrW � �W�As � n� � s�2� (23)

� ��WA � I�s � Wn�2� (24)

� �Ms � Wn�2� (25)

where M � WA � I

� �Ms�2� � �Wn�2� (26)

� tr�MRMT� � tr�WCWT� (27)

where tr(A) is the trace of A and is defined as the sum
of the diagonal entries. Re-expanding the expression
gives:

� tr�WARATWT � RATWT � WAR � R�

� tr�WCWT�. (28)

This expression can be explicitly minimized by taking
the derivative with respect to W, setting it to zero and
solving for W.

0 � 2WARAT � 2RAT � 2WC (29)

Solving for W:

WARAT � WC � RAT (30)

W�ARAT � C� � RAT. (31)

This yields the expression for the linear inverse oper-
ator:

W � RAT�ARAT � C� � 1. (32)

The Bayesian linear inverse derivation begins with the
expression for conditional probability:

P�s�x� �
P�x�s�P�s�

P�x�
(33)

which one would like to maximize. Beginning with a
measurement vector x:

x � As � n (34)

where A is the gain matrix, s is the strength of each
dipole component, and n is the noise vector. Assum-
ing both n and s are normally distributed with zero
mean and covariance matrices C and R, respectively,
one can rewrite P(x�s) and P(s):
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P�x�s��e � �As � x�TC � 1�As � x� (35)

P�s��e � sTR � 1s. (36)

This gives a simplified Bayesian expression:

max�P�s�x�� � max� �e � �As � x�TC � 1�As � x���e � sTR � 1s�

P�x� 	
(37)

� max���As � x�TC � 1�As � x� � sTR � 1s� (38)

� min��As � x�TC � 1�As � x� � sTR � 1s� (39)

� min�sTATC � 1As � sTATC � 1x � xTC � 1As

� xTC � 1x � sTR � 1s�. (40)

Taking the derivative with respect to s and setting it to
zero:

2ATC � 1As � 2ATC � 1x � 2R � 1s � 0. (41)

Solving for s gives:

s � �ATC � 1A � R � 1� � 1ATC � 1x � Wx (42)

which yields the expression for the Bayesian linear
operator

W � �ATC � 1A � R � 1� � 1ATC � 1. (43)

The above Bayesian linear operator is very similar to
that derived using Tichonov regularization. Again,
one begins with a measurement vector x:

As � x. (44)

A smoothing functional F is defined as:

F � �As � x�2 � ��Ms�2 (45)

where � and M are added for regularization. To cal-
culate the operator, the smoothing functional is explic-
itly minimized (taking its derivative and setting it to
zero). Solving for s:

0 � 2ATAs � 2ATx � 2�MTMs (46)

�ATA � �MTM�s � ATx (47)

s � �ATA � �MTM� � 1ATx � Wx (48)

W � �ATA � �MTM� � 1AT. (49)

This is equivalent to the Bayesian linear operator
when C � C�1 � I and �MTM � R�1. Wiener filtering
(also known as the Kalman-Bucy method) filtering
uses an optimal linear filter to minimize the expected
error between the actual source (i.e., input) and the
estimated source (i.e., noisy output):

ErrW � �Wx � s�2�. (50)

The operator must satisfy the Wiener-Hopf equation:

�sx � W�x (51)

where �sx � sxT� and �x � xxT�. Expanding the co-
variance terms gives:

s�As � n�T� � W�As � n��As � n�T� (52)

ssTAT � snT� � WAssTAT � nsTAT � Asn � nnT�.

(53)

Because the signal and noise are independent, the
signal-noise covariance terms (e.g., snT�) equal zero,
leaving:

ssTAT� � WAssTAT � nnT�. (54)

Again, because the signal and noise are independent,
we can separate the terms on the right side:

ssTAT� � W�AssTAT� � nnT�� (55)

RAT � W�ARAT � C�. (56)

Thus, the inverse operator is:

W � RAT�ARAT � C� � 1. (57)

These particular inverse derivations are very general
and allow us to express many different kinds of in-
verse methods. For example, arbitrary basis functions
can be used in the inverse approach by constructing R
such that

R � UUT (58)
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where U is an orthonormal set of basis vectors. Re-
placing R in equation (57) yields:

W � UUTAT�AUUTAT � C� � 1 (59)

W � U�UTAT���AU��UTAT� � C� � 1 (60)

W � U�AU�T��AU��AU�T � C� � 1. (61)

The new inverse operator using the arbitrary basis
functions is simply the original forward solution pro-
jected onto the new basis functions. As another exam-
ple, the low resolution electromagnetic tomography
(LORETA) inverse method [Lantz et al., 1997; Pascual-
Marqui et al., 1994], which imposes a smoothness
constraint on the inverse solution, can also be ex-
pressed in this framework. LORETA specifies R�1,
instead of R:

R � 1 � VTBTBV (62)

where, V is a diagonal matrix with each diagonal
element equal to the norm of the corresponding lead
field vector and B is the discrete Laplacian operator.

Finally, it is possible to show that these various
linear operators are equivalent (assuming that both
(ARAT � C) and (ATC�1A � R�1) are invertible).

RAT�ARAT � C� � 1 � �ATC � 1A � R � 1� � 1

� �ATC � 1A � R � 1�RAT�ARAT � C� � 1 (63)

� �ATC � 1A � R � 1� � 1�ATC � 1ARAT � AT�

� �ARAT � C� � 1 (64)

� �ATC � 1A � R � 1� � 1�ATC � 1�

� �ARAT � C��ARAT � C� � 1 (65)

� �ATC � 1A � R � 1� � 1ATC � 1. (66)

Although these two expressions are equivalent, it is
computationally more efficient to use the first expres-
sion (based on the minimization of expected error)
since it only requires the inversion of a matrix that is
square in the number of sensors, compared to square
in the number of dipoles. Typically, the number of
sensors is on the order of 200, whereas the number of
dipoles can easily be in the thousands.
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