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Abstract: Sleep spindles are bursts of rhythmic 10–15 Hz activity, lasting �0.5–2 s, that occur during Stage 2
sleep. They are coherent across multiple cortical and thalamic locations in animals, and across scalp EEG sites
in humans, suggesting simultaneous generation across the cortical mantle. However, reports of MEG spindles
occurring without EEG spindles, and vice versa, are inconsistent with synchronous distributed generation. We
objectively determined the frequency of MEG-only, EEG-only, and combined MEG-EEG spindles in high den-
sity recordings of natural sleep in humans. About 50% of MEG spindles occur without EEG spindles, but the
converse is rare (�15%). Compared to spindles that occur in MEG only, those that occur in both MEG and
EEG have �1% more MEG coherence and �15% more MEG power, insufficient to account for the �55%
increase in EEG power. However, these combined spindles involve �66% more MEG channels, especially
over frontocentral cortex. Furthermore, when both MEG and EEG are involved in a given spindle, the MEG
spindle begins �150 ms before the EEG spindle and ends �250 ms after. Our findings suggest that spindles
begin in focal cortical locations which are better recorded with MEG gradiometers than referential EEG due to
the biophysics of their propagation. For some spindles only these regions remain active. For other spindles,
these locations may recruit other areas over the next 200 ms, until a critical mass is achieved, including espe-
cially frontal cortex, resulting in activation of a diffuse and/or multifocal generator that is best recorded by ref-
erential EEG derivations due to their larger leadfields. Hum Brain Mapp 00:000–000, 2010. VC 2010 Wiley-Liss, Inc.

Key words: synchrony; cortex; thalamus; inverse solution; oscillation; human; sleep; matrix; core;
thalamic reticular nucleus; alpha
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INTRODUCTION

Oscillatory EEG phenomena are thought to reflect a pri-

mary thalamo-cortical mechanism for the modulation,

phasing, and integration of neuronal information process-

ing across large numbers of cortical neurons [Buzsaki,

2006]. Among the most intensely studied such phenomena

are sleep spindles and their homologues which occur in

anaesthetized or in vitro systems [Andersen and Ander-

sson, 1968; Contreras et al., 1997; Destexhe et al., 1998;

Spencer and Brookhart, 1961a,b]. Discovered 75 years ago
[Loomis et al., 1935], spindles occur mainly in Stage 2
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NREM sleep, with a frequency of 10–15 Hz and a duration

of 0.5–2 s [Gibbs and Gibbs, 1950].
Since spindles are a model for thalamo-cortical synchro-

nizing mechanisms, considerable effort has been devoted
to understanding how synchrony arises and how much
synchrony is present during spindles. Some animal models
have found a slow propagation of spindles from a focal
onset zone [Andersen and Andersson, 1968; Kim et al.,
1995], whereas others report a remarkable synchrony in
widespread locations [Contreras et al., 1997]. The current
consensus is that spindles during normal sleep are syn-
chronous across the thalamus and cortex, but may become
desynchronized after lesions, or in vitro, or under anesthe-
sia [Contreras et al., 1997; Destexhe and Sejnowski, 2003;
McCormick and Bal, 1997]. Elegant intracellular studies
have found that spindles emerge from interactions
between inhibitory cells in the thalamic reticular nucleus
and bursting thalamocortical neurons, that then entrain
this rhythm in their target cortical areas [Bazhenov et al.,
2002]. Experimental data and computational models sug-
gest a critical role for cortico-thalamic projections in spin-
dle synchrony [Contreras et al., 1997; Destexhe et al., 1998;
Traub et al., 2005].

Widespread synchrony of spindle generators in
humans has also been inferred from the high correlation
of spindle discharges across widely dispersed scalp EEG
channels [Contreras et al., 1997]. However, other studies
found that multiple generators are necessary to account
for the MEG field pattern [Gumenyuk et al., 2009; Ishii
et al., 2003; Manshanden et al., 2002; Shih et al., 2000;
Urakami, 2008].

A more striking but less completely described dissocia-
tion between MEG and EEG is the occurrence of a spindle
in one measurement modality but not the other. An early
study noted that MEG spindles can be completely absent
even when the EEG spindle is clear [Hughes et al., 1976].
A later single-sensor study found that MEG spindles were
more common but occurred only at vertex [Nakasato
et al., 1990]. Yoshida et al. [1996] classified spindles as
EEG-only (30%), MEG-only (20%), or both. However, since
they only used seven sensors, some of this disparity may
reflect incomplete sampling. In a study examining this
question with whole head recordings of both EEG and
MEG, Urakami [2008] remarked that MEG spindles can
occur without EEG spindles but considered such events
rare and did not analyze them. Similarly, Manshanden
et al. [2002] noted that spindles could occur in either EEG
or MEG or both, but did not quantify this phenomenon.
We re-examined these issues in the current study, using
high density EEG and MEG, and objective spindle catego-
rization. We found that MEG spindles often occur without
significant EEG involvement. Comparison of such spindles
with those occurring in both MEG and EEG suggests that
spindles may appear first in a manner that is sometimes
more efficiently recorded by MEG gradiometers, and that
they become visible to referential EEG when they spread,
especially to frontocentral areas.

METHODS

Participants and Recordings

We recorded the electromagnetic field of the brain dur-
ing sleep from seven healthy adults (three males, four
females, ages 20–35). Participants had no neurological
problems including sleep disorders, epilepsy, or substance
dependence, were taking no medications and did not con-
sume caffeine or alcohol on the day of the recording. We
used a whole-head MEG scanner (Neuromag Elekta)
within a magnetically shielded room (IMEDCO, Hagen-
dorf, Switzerland) and recorded simultaneously with 60
channels of EEG and 306 MEG channels (Fig. F11). MEG
SQUID (super conducting quantum interference device)
sensors are arranged as triplets at 102 locations; each loca-
tion contains one ‘‘magnetometer’’ and two orthogonal pla-
nar ‘‘gradiometers’’ (GRAD1, GRAD2). Throughout the
text, the square root of the sum of the power of GRAD1
and GRAD2 is referred to as GRAD. Unless otherwise
noted, MEG will be used here to refer to the gradiometer
recordings. EEG electrodes were placed on the scalp in the
standard 10-10 montage, and referenced to an averaged
mastoid. Electrode locations in individual subjects were
recorded using a 3D digitizer (Polhemus FastTrack). HPI
(head position index) coils were used to measure the spa-
tial arrangement of head relative to the scanner. Four sub-
jects had a full night’s sleep in the scanner and three had
daytime sleep recordings (2 h). Padding was provided
under the arms and knees, and around the head and neck,
to make the subjects more comfortable and minimize
movements. Every 20 min, the recording was stopped,
data were saved, HPI locations were remeasured, and
recordings were restarted. Analyses were limited to
epochs where the subject did not move between the begin-
ning and end of the 20-min recording. Sampling rate was
either 1,000 Hz (down sampled by a factor of 2 for the
final analysis) or 600 Hz. The continuous data were low-
pass filtered at 40 Hz. An independent component analysis
(ICA) algorithm was used to remove ECG contamination
[Delorme and Makeig, 2004]. Sleep staging was confirmed
by three neurologists according to Rechtschaffen and
Kales’ sleep classification [Rechtschaffen and Kales, 1968].

Sequential Power Spectral Density (SPSD) and

Spindle Detection Algorithm

To objectively classify spindles as being manifested in
the referential EEG, MEG gradiometers, or both, we calcu-
lated the power spectral density of EEG and MEG sensors
during 30-s long recording epochs. Epochs were chosen
based on visual inspection as containing a relatively high
density of EEG spindles during typical Stage 2 sleep and
no artifacts. The choice of epochs to study was made with-
out reference to the MEG recordings. Power was calcu-
lated in the frequency range of 7–15 Hz using windows
500-ms long and moving steps of 100 ms (Fig. 2). Spindles
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were automatically detected from the resulting SPSD time-
series. Since the absolute size of MEG sensor recordings
can be strongly influenced by the distance of the sensor

from the cortical surface (due to the position of the head
in the dewar), we first normalized the MEG for each sen-
sor to its maximum across the 30-s data segment. Then,
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Figure 1.

Example Mo (MEG-only) and ME (MEGþEEG) spindles. For clarity, selected spindles in sample refer-

ential EEG and MEG gradiometer channels are highlighted in gray. Broadband (A) and 7–15 Hz band-

pass (B) recordings are shown. Complete recording profiles are shown in Supporting Information

Figures 1 andF2 2. L (Left), M (Middle), R (Right) F (Frontal), T (Temporal), C (Central), P (Parietal).
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each sensor’s SPSD data were smoothed by five sequential
passes of a three point smoothing filter. All resulting local
maxima were found, and the standard deviation of these

maxima was calculated across all sensors. The number of
channels with maxima greater than two standard devia-
tions above zero occurring within a 100-ms window was
counted. This count was squared, then convolved ten
times with a three point smoothing filter, then normalized
and the largest 80% were retained as spindles. These mul-
tiple steps had the effect of selecting epochs with spindle-
frequency power consistently above baseline for a suffi-
cient period of time and across a multiple channels. We
compared the detection of EEG spindles by this computer
algorithm to that of an experienced electroencephalogra-
pher in a random 30-s epoch from each of the subjects. All
of the 54 human-detected spindles were also detected
automatically. An additional 21 spindles detected auto-
matically were not detected by the human observer. Upon
examination, it was determined that these events could
reasonably be considered spindles, but the human ob-
server was using a higher internal threshold.

It should be noted that the classification of spindles as
being present in both MEG gradiometers and in referential
EEG (ME), versus in MEG gradiometers only (Mo) is not
pure, absolute or necessarily even dichotomous in the
sense of denoting two clearly distinct and non-overlapping
populations. Indeed, the distribution of EEG spindle-fre-
quency activation during MEG spindles was continuous,
and while the threshold was slightly more lenient than
that of an experienced electroencephalographer, the pre-
cise choice of the threshold was necessarily arbitrary.
However, several different thresholds with this method, as
well as other methods were used to categorize spindles as
ME vs. Mo, without a change in the fundamental findings.

Amplitude, Coherence, and Topography

To compare the amplitude, coherence, and topography
of ME vs. Mo spindles, we analyzed 1,000-ms epochs of
MEG gradiometer recordings centered on their peak of the
spindle. After de-trending, three different amplitude crite-
ria were calculated for each epoch. The first amplitude cri-
terion was RMS (root mean square) amplitude which is
defined as the square root of the mean of the square of the
waveform. Second was the Hilbert amplitude which was
calculated as the mean of square root of the conjugate
square of Hilbert transforms of the measured signal. For
the coherence measures, Capon’s nonparametric spectral
estimation which is known as the minimum variance dis-
tortionless response (MVDR) was used. MVDR spectral
estimation is based on the output of a bank of filters
where the bandpass filters are data and frequency depend-
ent [Benesty et al., 2005]. The MVDR may be advantageous
over Welch’s method in distinguishing the coherences of
nearby frequencies. Here, the MVDR estimate of each pos-
sible gradiometer-pair was calculated over 7–15 Hz. Then,
the mean of these values were averaged over the sensor
pairs to reach one number per spindle representing the
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Figure 2.

Automatic detection of EEG and MEG spindles. A. Power from 7

to 15 Hz in a 500 ms moving window (Sequential power spectral

density: SPSD) is plotted for a 30-s epoch of Stage 2 sleep for each

EEG ch, normalized to the maximum value of the largest channel.

The average of all channels is in red. B. Output of the EEG spindle

detection algorithm (see Methods). The horizontal line indicates

the detection threshold, and yellow stars denote automatically

detected peaks, with maroon vertical lines allowing comparison of

their timing to other panels. C. MEG SPSD for each channel, nor-

malized to the maximum value of the largest channel. The average

of all channels is in red. D. MEG SPSD for each channel, normalized

to the maximum value of that channel. The average of all channels is

in red. E. Output of the MEG spindle detection algorithm. The hori-

zontal line indicates the detection threshold, and yellow stars the

automatically detected peaks, with green vertical lines allowing

comparison of their timing to other panels. Many MEG spindles

have little or no corresponding EEG spindle. (For an additional

example from another subject, see Supporting Information Fig. 1).
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mean within modality coherence for gradiometers over the
entire 7–15 Hz range.

RESULTS

Visual inspection of raw traces from referential EEG and
MEG gradiometer recordings (Fig. 1A) revealed spindles
that were visible in both MEG and EEG (‘‘ME’’ spindles)
whereas others seemed to be recorded with MEG only
(‘‘Mo’’ spindles). This became clearer when the traces were
band-passed in the spindle frequency (Fig. 1B), and further
when the power in this band was integrated over 500-ms
periods and plotted sequentially (Fig. 2). An example from
another subject is shown in Supporting Information Fig-
ures 1 and 2. To quantify this phenomenon we used auto-
matic detection in each modality followed by
categorization based on coincidence detection. Finally, we
tested if the Mo and ME spindles differ in their amplitude,
coherence, number of channels involved, or topography.

Sequential Power Spectral Density (SPSD)

Sequential power spectral density (SPSD) in the spindle
range was calculated using 500-ms windows (sliding with

100 ms steps) for Stage 2 NREM sleep epochs with numer-
ous spindles. Four 30-s epochs were analyzed in each of
the participants. This method is identical to that used by
Contreras et al. [1997] as a key element supporting their
argument for large-scale synchrony. Plots of SPSD from
referential EEG replicate the findings of Contreras et al.
(but with more EEG channels): spindles are visible as clear
peaks where essentially all channels are simultaneously
active (Fig. 2A). Like EEG, MEG gradiometers also show
large peaks when many channels are active, and these are
generally at the same times as the EEG spindles (Fig. 2C).
This was quantified by averaging the SPSD across all EEG
channels, and similarly averaging the SPSD across all
MEG channels, and then calculating the correlation coeffi-
cient between these two time-series for each 30-s segment.
Results were averaged across four segments in every sub-
ject and across subjects; the mean of these coefficients was
0.66 � 0.09. Thus, while EEG and MEG spindles tended to
co-occur, there were many times when they diverged.

Examination of Figures 1 and 2 also reveals that EEG chan-
nels are seldom individually active in this frequency range
outside of frank spindles, whereas individual MEG channels
can show a large amount of activity between spindles. Even
during spindles, a given MEG sensor could begin and end its
involvement asynchronously with the EEG or with other
MEG channels. This was quantified by calculating the aver-
age correlation between all possible pairs of EEG channels
during the 30-s segments in a given subject, and then averag-
ing these values across all four 30-s segments for that subject.
The similar average correlation was calculated for all pairs of
GRAD1 channels, and this was averaged with the similar
average across pairs of GRAD2 sensors. Across the seven
subjects, the mean � STD pairwise EEG correlation was
0.63 � 0.08. In contrast the same measure for gradiometer
channels was only 0.22 � 0.10. Paired t-test between these
values demonstrated a significant difference (P < 0.00001).

Automatic MEG and EEG Spindle Detection

To objectively identify spindles in the MEG and EEG,
we devised a method based on their SPSD (see Fig. 2 and
Supporting Information Fig. 2). This was done independ-
ently for EEG (detecting a total of 295 peaks in all subjects)
and MEG (detecting a total of 537 peaks), and the time of
peak power was determined for each peak. Parameters
were chosen so that the automatic detection closely
matched the judgment of experienced electroencephalogra-
phers. We examined if the occurrence of a peak (indicating
a spindle) in one modality implied that it also occurred in
the other, while permitting a difference in peak latency
ranging from 0 to 1,000 ms in 100-ms steps. As is seen in
Figure F33, the peak coincidence probability increased when
greater temporal imprecision was allowed. For all the per-
mitted lags, the probability of a peak in EEG-SPSD given
existence of an MEG-SPSD peak was lower than the proba-
bility of occurrence of a peak in MEG-SPSD given
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Figure 3.

Probability of MEG vs. EEG spindle co-occurrence. Spindles

were automatically detected from MEG gradiometers and refer-

ential EEG, and their co-occurrence at different delays is plotted.

The thick black line shows the probability that an MEG spindle

occurs given that an EEG spindle had, and the thin gray line

shows the reverse relationship. Error bars are standard devia-

tions across subjects. Dashed lines represent the probability of

peak coincidence after the inter-spindle intervals have been

randomized. Both solid lines are greater than their correspond-

ing dashed lines, indicating that spindles in the two measurement

modalities do tend to occur together. The gray thin line is below

the black thick line, indicating that most EEG spindles are

accompanied by a MEG spindle, but not vice versa.
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existence of an EEG-SPSD peak. That is, referential EEG
spindles were more likely to be accompanied by a MEG
gradiometer spindle than the converse.

A maximum EEG vs. MEG spindle peak difference of
500 ms was chosen for the analyses described below, to
correspond to the usual duration of a spindle of about 1 s.
On the basis of this analysis, we divided the MEG-SPSD
peaks into two groups. Those that had a coincident EEG-
SPSD peak were categorized as ME spindles and those
which did not were categorized as Mo spindles. Using
these criteria, a total of 254 ME and 283 Mo spindles were
automatically identified in the seven subjects. Across sub-
jects, the mean and standard deviation of the number of
Mo spindles were 40.42 � 9.82, and of ME spindles were
36.28 � 10.41. Consequently, the mean and standard devi-
ation across subjects of the probability that an MEG spin-
dle would occur given that an EEG spindle was detected
was 0.85 � 0.05. In contrast, the probability that an EEG
spindle would occur given that an MEG spindle was

detected was only 0.47 � 0.13. A paired t-test indicates
that these proportions were significantly different (P <
0.001). Thus, about half of the MEG spindles have a corre-
sponding EEG spindle during the integration period of
500 ms in any given subject. Spindles occurring only in
EEG were rare and were not studied further here.

The expected coincidence rate under the null hypothesis
of no relation between the peaks of EEG and MEG spin-
dles was estimated by randomly and independently shuf-
fling the inter-peak intervals of each of the 28 epochs. The
results, plotted as dashed lines in Figure 3, are consistently
lower than the actual coincidence rates. At an allowed
500-ms asynchrony, the mean � standard deviation across
subjects of the probability that an MEG spindle would
occur given that an EEG spindle was detected was 0.65 �
0.08, whereas the probability that an EEG spindle would
occur given that an MEG spindle was detected was 0.37 �
0.11. ANOVA was conducted with factors of permitted
lag, target modality, and actual/randomized intervals. All
main effects were significant, including, specifically, the
main effect of actual vs. randomized intervals (F ¼ 349 dF
¼ 1, P < 0.00001). Thus, the times of occurrence of EEG
and MEG were related, but nonetheless showed consider-
able independence.

Amplitude, Coherence, and Number of MEG

Channels Involved in Mo vs. ME Spindles

We next examined the 1,000-ms MEG epochs centered
on the gradiometer spindle peaks, to determine if any dif-
ferences could be found between ME and Mo spindles
(Table T1I). We first tested if spindles become apparent in
referential EEG when the MEG sensor signals (and thus
their underlying sources) are larger. Indeed, the RMS am-
plitude of the GRADs was 13% greater for ME than Mo
spindles (t test, P < 0.00001). However, this amplitude
increase is not sufficient in itself to explain the 55% aver-
age increase in EEG amplitude between these conditions.
Another possibility would be for the activity in the genera-
tors underlying the MEG signals to become more coherent,
and thus summate more effectively. However, the average
MVDR coherence between GRAD channels only increased
by 1% from Mo to ME spindles, again a change that is too
small to account for the large increase in EEG spindle am-
plitude. The coherence remained indistinguishable
between ME and Mo spindles when considering frequen-
cies from 10 to 15 Hz individually (see Fig. F44). These val-
ues were obtained by comparing all spindles in each
category (‘‘ME’’ and ‘‘Mo’’). If we averaged first within a
subject and then found the mean across subjects, similar
values were obtained. We also obtained similar values
when using different methods to estimate amplitude and
power (please see Supporting Information Table S1). Simi-
lar results were also obtained when we made these calcu-
lations for just the GRAD channels exceeding criterion for
participation in the spindle, or for just the top five
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TABLE I.AQ4

Comparison
across patients

MEG RMS
power

EEG RMS
power

Coherence
between GRADs

(MVDR)

All channels
Mo 1.98 4.8 0.244
ME 2.33 7.43 0.255
Ratio 1.18 1.55 1.03
t test P< 0.01 0 0

Active channels
Mo 1.97 0.253
ME 2.24 0.258
Ratio 1.14 1.02
t test P< 0.01 0.1

Top 5 channels
Mo 1.96 0.26
ME 2.22 0.26
Ratio 1.12 1
t test P< 0.02 0.98

Comparison across
spindles

MEG RMS
power

EEG RMS
power

Coherence
between GRADs

(MVDR)

All channels
Mo 1.96 4.71 0.25
ME 2.3 7.42 0.25
Ratio 1.18 1.54 1.01
t test P< 0.0001 0.0001 0.017

Active channels
Mo 1.95 0.26
ME 2.22 0.26
Ratio 1.14 0.99
t test P< 0.001 0.15

Top 5 channels
Mo 1.94 0.27
ME 2.18 0.26
Ratio 1.12 0.97
t test P< 0.0001 0.2
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channels in amplitude in every spindle. Thus, although
MEG signals during spindles become moderately larger
and perhaps slightly more coherent when they are accom-
panied by an EEG spindle, these increases do not seem
sufficient to explain the large increase in EEG amplitude.

In contrast to these small or negligible differences in am-
plitude, and coherence between Mo and ME, we did find
a large increase in the number of channels participating in
the spindles between conditions. To evaluate if a given
channel participated in a spindle, we first selected, using
the automated algorithm, nonspindle periods as those

periods that fell below the threshold line. Channels were
considered to participate in the spindle if, at any point
during that spindle, their PSD amplitude exceeded twice
the standard deviation of their activity during the non-
spindle periods. Based on this analysis, a mean of 20.9%
of the GRAD channels participated in ME spindles, signifi-
cantly greater than the 12.6% participating in Mo (non-
paired t test, P < 0.00001).

MEG Topography Differences Between Mo and

ME Spindles

We also examined topography as a possible explanation
for why some MEG gradiometer spindles were observed
in referential EEG and others not. We reasoned that some
locations of the generators underlying the MEG signals
might project more effectively to the EEG sensors. Visual-
ization of the average GRAD topography revealed no
striking difference between Mo (Fig. F55A) versus ME (Fig.
5B) spindles besides amplitude. However, when the ratio
is taken between these maps (Fig. 5C), it is clear that
power increases to ME at some locations substantially
more (>80%) than at others (<10% increase). Locations
with greater increases are over prefrontal cortex, generally
more anterior and toward the midline than the overall av-
erage topography. The significance of this topographical
change was tested using ANOVA with factors of condition
(Mo, ME) and topography (204 gradiometer channels) on
the average power for each spindle, after normalization as
suggested by McCarthy and Wood [1985]. Of interest is
the interaction of condition and location (due to normal-
ization, the main effect of condition was not significant).
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Figure 4.

Coherence-frequency relationship in ME versus Mo spindles.

The average MVDR coherence between all pairs of gradiometers

is plotted from 10 to 15 Hz. Although higher frequencies had

higher coherence, this was similar for ME (solid) and Mo

(dashed). Thick lines are means, thin standard deviation.
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Figure 5.

More frontal and midline MEG topography in spindles that are also seen with EEG. Topographic

plots of MEG gradiometer spindle power during spindles observed only in MEG (A), in both MEG

and EEG (B), and their ratio (C). Note the locations marked by white arrows in C, where the maxi-

mum signal increase was observed. These locations are anterior and toward the midline as com-

pared to the maxima in A and B. The arrows are placed in the same locations in all three topoplots.
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This interaction was highly significant (df 151,204; F ¼
4.31, P < 0.0001).

Time-Course Differences Between MEG and

EEG During ME Spindles

The finding that ME spindles involve more channels
and a somewhat more frontal topography than Mo spin-
dles suggests that the brain substrate of spindles which
are recorded only by MEG may need to spread in order to
also appear in the EEG. We tested this by examining the
relative onsets of MEG and EEG discharges in ME spin-
dles. The time-courses of the PSD from each MEG gradi-
ometer channel was first normalized to its maximum
value in the 30-s epoch. Then, all MEG gradiometer chan-
nel’s PSDs in a given spindle were averaged together, and
then normalized so that minimum to maximum ranged
from 0 to 1. The same average was created for EEG and
all of the spindles were then aligned to the peak (see Fig.

F6 6). The average normalized EEG PSD values from 700 to
300 ms before its peak were significantly smaller than
those of the normalized MEG PSD (paired t test, two-
tailed, P < 0.001), indicating that the MEG spindle onset
precedes that of the EEG. A similar comparison of the
curves during the fall of the spindle found that the MEG
spindle terminated later than the EEG (paired t test, two-
tailed, P < 0.001). Taking 15% of maximum as the onset of
the spindle discharge, the average curves suggest that the
EEG spindle begins �190 ms after the MEG spindle. Using
the same threshold, the EEG spindle ends �310 ms before
the MEG spindle. If a threshold of 40% were chosen, then
the corresponding values would be 100 and 140 ms. Thus,

on average, the MEG gradiometer spindle both begins
before and ends after the referential EEG spindle.

DISCUSSION

Our findings confirm previous studies showing dissocia-
tions in the visibility of spindles in MEG vs. EEG [Hughes
et al., 1976; Manshanden et al., 2002; Nakasato et al., 1990;
Urakami, 2008; Yoshida et al., 1996]. The current study is
the first to quantify this phenomenon using high-density
MEG and EEG recordings covering the entire head. We
found that MEG spindles without EEG (Mo) often occur
but not vice versa, suggesting that the neural substrate of
referential EEG spindles may be dependent on the neural
substrate of MEG gradiometer spindles, but not vice versa.
Evidence for this was found in comparing the dynamics of
MEG and EEG during spindles that were recorded with
both modalities (ME), where the onset of the MEG spindle
activity preceded that of the EEG spindle by about two
cycles. This suggests that the substrate of the MEG spindle
is usually activated first, and this may lead to activation of
the neural substrate of the EEG spindle.

To gain insight into this process, we quantified the char-
acteristics differentiating spindles where the MEG spindle
substrate failed to engage that of the EEG (Mo) from those
where it did (ME). MEG amplitude increased far less from
Mo to ME spindles than did EEG (�13% vs. �55%). Thus,
the EEG amplitude increase cannot be explained by the
MEG generators increasing in amplitude. Similarly, since
the coherence between MEG sensors increased only
slightly (�1%) from Mo to ME spindles, an increase in the
coherence of the generators underlying the MEG spindles
is an unlikely explanation for why they sometimes become
visible in the EEG. In contrast to these relatively small
changes between Mo and ME spindles, the number of
MEG sensors participating in the spindle increased �66%,
and the topography shifted frontally.

These findings suggest that spindles may become visible
in the referential EEG when a critical amount of cortex
(reflected in the number of participating MEG gradiome-
ters) becomes involved, especially in the frontal lobe.
Under this hypothesis, MEG and EEG spindles represent
the same generic types of underlying neural generators,
with the difference being the number and location of such
generators that need to be engaged for the spindle to be
visible. An alternative hypothesis is that the neural genera-
tors of MEG vs. EEG spindles differ not only in number
and location, but also in their basic circuitry, as we pro-
pose below. In either case, the current findings suggest
that it will be necessary to revise models of spindles
derived mainly from studies in animals which posit a sin-
gle monolithic synchronous spindle generator during natu-
ral sleep [Contreras et al., 1997].

EEG and MEG both detect intracortical currents driven
by active currents across pyramidal cell membranes
[Hamalainen and Ilmoniemi, 1994]. Thus, the ultimate
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Figure 6.

Comparative time-course of MEG and EEG power during ME

spindles. A. Normalized power across all spindles and channels

shows that MEG gradiometer activity (solid line) has increased

to 15% of maximum �190 ms before the referential EEG

(dashed line), and it falls to that level �320 ms after the EEG.

Similarly, at 40% of maximum, MEG leads the EEG by 100ms

during the rising phase, and lags it by 140 ms during the falling

phase, of the spindle. B. The same pattern is seen in each of

the subjects considered individually. For statistical analysis, the

period from 700 to 300ms before the peak power was taken as

the rise period, and from 300 to 700 ms after the stimulus to

be the fall period (see text).
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candidate neuronal sources of EEG and MEG are identical,
and the difference between them must arise from differen-
ces in the biophysics of how these sources do, or do not,
propagate to the sensors. Because EEG is generated by
extracellular currents, it is smeared by the CSF and skull
intervening between cortex and scalp; MEG, generated by
intracellular currents, is insensitive to these effects. The
magnetic fields generated by radial current dipoles (i.e.,
perpendicular to the scalp, for example on the crowns of
gyri), do not leave the head and so cannot be detected
with MEG. In contrast, EEG measures both tangential and
radial sources [Cohen and Cuffin, 1983]. At a local level,
the EEG and MEG are generated by current passing
through different limbs of the same electrical circuit. How-
ever, due to biophysics, each referential EEG sensor
records from a much larger cortical area (its ‘‘leadfield’’)
than each MEG gradiometer. Although this would seem to
imply that any spindle recorded by MEG would also be
seen with EEG, our results found the opposite to be true.

We propose that, paradoxically, the occurrence of MEG-
only spindles is precisely because of their small leadfields. If
a focal spindle generator is in the center of the leadfield of a
particular gradiometer then it will have a high SNR in that
sensor, but in EEG sensors recording from the same source,
the many other unrelated sources in their large leadfields
would obscure the spindle, resulting in low SNR, possibly
below detection threshold. Noise may be generated espe-
cially by radial generators in the crowns of gyri. These are
closest to the sensors and thus the greatest contributors to
EEG, but are invisible to MEG. Conversely, because EEG
does integrate over such a large area, it is exquisitely sensi-
tive to even weak sources when they are synchronous over
this area. A completely synchronous and distributed source
will be difficult to detect with MEG because it will largely
cancel in sulcal cortex (because the dipoles in the opposite
banks have opposite signs), and cannot be detected in gyral
crown cortex because the source is radial. Thus, the biophy-
sics of MEG and EEG propagation suggest that to some
extent, they may be recording from different kinds of genera-
tors during spindles, highly focal vs. highly distributed,
respectively. This hypothesis is supported by the observation
that MEG gradiometers have generally low coherence with
each other (�0.25) during spindles, whereas referential EEG
signals appear highly coherent (�0.7) [Dehghani et al., 2010].
Furthermore, the frequency spectra of MEG and EEG during
ME spindles are highly distinct, and this also implies distinct
underlying neural generators [Dehghani et al., in press].

These predictions are consistent with the reported rela-
tive amplitudes of referential EEG and MEG gradiometers
to activation of focal versus distributed sources. Specifi-
cally, when measured as peak-to-peak amplitudes in lV
and fT cm�1, the ratio of EEG to MEG is about 0.04 for the
response to electrical stimulation of the median nerve, at
20 ms, presumed to be a single focal dipole [Huang et al.,
2007; Komssi et al., 2004]. In contrast, during the current
spindle recordings the EEG to MEG ratio was about 2.0.
Thus, if isolated focal sources were producing the MEG

spindles of the observed amplitude, then the correspond-
ing EEG spindles would only be about 2 lV in amplitude,
about 50 times smaller than the observed EEG spindles
and not detectable within the noise. This would suggest
that EEG spindles are generated by a distributed source.
Distributed sources decrease relatively little from the corti-
cal surface to the scalp [Nunez and Silberstein, 2000], and
this can be inferred to be the case from combined record-
ings of ECOG and scalp EEG spindles, although this has
not been systematically quantified [Asano et al., 2007;
Nakabayashi et al., 2001]. Thus, the fact that EEG and
MEG spindles can occur independently, as well as their
relative amplitudes with respect to each other and to corti-
cal recordings, are consistent with the possibility that
MEG is recording from scattered focal asynchronous gen-
erators whereas EEG is recording from a highly distrib-
uted and coherent generator.

The proposal that MEG gradiometers record mainly
from multiple asynchronous focal spindle generators
whereas referential EEG records mainly from a single dif-
fuse spindle generator would require that such distinct
generating circuits exist for spindles. Indeed classical stud-
ies found that barbiturate spindles in cats can either be re-
stricted to small thalamo-cortical modules with largely
independent durations, onsets, frequencies and phase, or
be synchronous over wide areas [Andersen et al., 1967].
These focal vs. distributed spindles were identified with
‘‘augmenting’’ vs. ‘‘recruiting’’ responses that characterize
cortical projections from the ‘‘specific’’ vs. ‘‘nonspecific’’
thalamus [Spencer and Brookhart, 1961b], a distinction
that is currently expressed as ‘‘matrix’’ vs. ‘‘core’’ systems
[Jones, 2001]. Thus, one model suggested by our data is
that the EEG is more sensitive to spindles that are dif-
fusely and synchronously generated by the matrix thala-
mocortical system, whereas the MEG is more sensitive to
multiple focal asynchronous spindles generated by the
core thalamocortical system. Both systems would be active
during ME spindles, but mainly the core system would be
active during Mo spindles.

Note that even if MEG gradiometers and referential
EEG are seeing different neuronal sources, the current
findings demonstrate that these sources are not occurring
randomly with respect to each other. Intracellular studies
have found that spindles emerge from interactions
between inhibitory cells in the thalamic reticular nucleus
and bursting thalamocortical neurons [Bazhenov et al.,
2002]. The intrinsic conductances that underlie the burst-
ing and refractoriness which drive the rhythmicity are
active only in a restricted range of membrane potential
[Destexhe and Sejnowski, 2003]. This range occurs during
Stage 2 sleep, resulting in spindles and other EEG charac-
teristics. Although the physiology of matrix vs. core tha-
lamic cells have not been separately determined,
presumably they are similar, and this shared permissive
context may be one source of the correlation demonstrated
between MEG and EEG spindles, even if they do not share
the same neural generators. Furthermore, connections
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between the matrix and core systems at several cortical
and thalamic locations provide an opportunity for spindles
in one system to recruit the other [Zikopoulos and Barbas,
2007].

Such an interaction, starting in the core system and
spreading to the matrix, could result in the observation
reported here that when MEG and EEG spindles co-occur,
the spindle starts approximately two cycles earlier in the
MEG. A recruitment of thalamo-cortical domains within
the core system is suggested by the finding that ME differ
from Mo in having 66% more involved channels. Further-
more, the more frontal MEG topography of ME vs. Mo
spindles, suggests that the recruitment of frontal areas
may either activate a critical mass of domains, or trigger a
widespread coherent diffuse generator necessary for the
appearance of a spindle in the EEG. A special role of pre-
frontal areas 9, 13, and 46 in synchronizing thalamo-corti-
cal oscillations is suggested by their uniquely strong and
widespread projections to the nucleus reticularis thalami
in macaques [Zikopoulos and Barbas, 2006]. In humans,
Areas 9 and 46 are in the middle and superior frontal gyri,
corresponding generally to where ME spindles evoked
more power than Mo [Rajkowska and Goldman-Rakic,
1995].

These differences between EEG and MEG may have
been smaller if more focal EEG derivations (bipolar or
Laplacian), and/or less focal MEG magnetometers had
been compared rather than referential EEG to MEG gradi-
ometers. However, our intent is not to draw a general con-
clusion about EEG and MEG, but to note how biophysical
differences between referential EEG and gradiometer MEG
may reveal different aspects of the spindle generating sys-
tem. Specifically, we hypothesize that referential EEG’s
biophysically-determined sensitivity to diffuse activation
allows it to record spindles generated by the matrix thala-
mocortical system, whereas gradiometer MEG’s sensitivity
to focal sources allows it to record spindles generated by
the core system. Confirmation of this hypothesis will
depend on intracranial recordings and modeling studies.
The quantification in the current results provides essential
constraints and checks on those models.
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