2 Ten Simple Rules for Designing ERP Experiments

Steven J. Luck

Peaks and Components

The term ERP component refers to one of the most important but most nebulous con-
cepts in ERP research. An ERP waveform unambiguously consists of a series of peaks
and troughs, but these voltage deflections reflect the sum of several relatively inde-
pendent underlying or latent components. It is extremely difficult to isolate the latent
components so as to measure them independently, which is the single biggest road-
block to designing and interpreting ERP experiments. Consequently, one of the keys to
successful ERP research is to distinguish between the observable peaks of the waveform
and the unobservable latent components. This chapter describes several of the factors
that make it difficult to assess the latent components, along with a set of “rules” for
avoiding misinterpreting the relationship between the observable peaks and the un-
derlying components.

Panels A-C of figure 2.1 illustrate the relationship between the visible ERP peaks and
the latent ERP components. Panel A shows an ERP waveform; panel B shows a set of
three latent ERP components that when summed together equal the ERP waveform in
panel A. When several voltages are simultaneously present in a conductor such as the
brain, the combined effect of the individual voltages is exactly equal to their sum, so it
is quite reasonable to think about ERP waveforms as an expression of several summed
latent components. In most ERP experiments, the researchers want to know how an
experimental manipulation influences a specific latent component, but we don’t have
direct access to the latent components and must therefore make inferences about them
from the observed ERP waveforms. This is usually more difficult than it might seem,
and the first step is to realize that the maximum and minimum voltages (i.e., the peak
amplitudes) in an observed ERP waveform are not usually a good reflection of the
latent components. For example, the latency of peak 1 in the ERP waveform in panel A
is much earlier. than the peak latency of component C1 in panel B. This leads to our
first rule of ERP experimental design and interpretation:
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Figure 2.1

Examples of the latent-components that may sum together to form an observed ERP waveform.
Panels (B) and (C) show two different sets of latent components that could underlie the waveform
shown in panel (4). Panel (D) shows the effect of decreasing the amplitude of component C2’ by
50% (broken line) compared to the original waveform (solid line). Panel (E) shows how an in-
crease in the amplitude of component C1 (broken line) relative to the original waveform (solid
line) can create an apparent shift in the latencies of both peak 1 and peak 2. Panel (F) shows how
an increase in the amplitude of component C3 (broken line) relative to the original waveform
(solid line) can influence beth the amplitude and the latency of peak 2. Panel (G) shows a com-
ponent at three different latencies, representing trial-by-trial variations in latency; panel (H) shows
the average of these three waveforms, which is broader and has a smaller peak latency (but the
same area amplitude) compared to each of the single-trial waveforms.



Ten Simple Rules for Designing ERP Experiments 19

Rule #1 Peaks and components are not the same thing. There is nothing special about
the point at which the voltage reaches a local maximum or minimum.

Researchers often quantify ERP waveforms by measuring the amplitude and latency
of the voltage peaks, either implicitly or explicitly assuming that these measures pro-
vide a good means of assessing the magnitude and timing of a particular latent com-
ponent. This is not usually a good assumption, and it leads to many errors in
interpretation. We will discuss strategies for avoiding this problem later in this chapter.

Panel C of figure 2.1 shows another set of latent components that also sum together
to equal the ERP waveform in panel A. In this case, the relatively short duration and
rounded shape of peak 2 in panel A bears little resemblance to the long duration com-
ponent C2' in panel C. This leads to our second rule:

Rule #2 Tt is impossible to estimate the time course or peak latency of a latent ERP
component by looking at a single ERP waveform—there may be no obvious relation-
ship between the shape of a local part of the waveform and the underlying latent
components.

Violation of this rule is especially problematic when comparing two or more ERP
waveforms. For example, consider the ERP waveforms in panel D of figure 2.1. The
solid waveform represents the sum of the three latent components in panel C (and
is the same ERP waveform as in panel A). The dashed waveform shows the effect of
decreasing component C2’ by 50 percent. To make this a bit more concrete, you can
think of these waveforms-as the response to an attended stimulus and an unattended
stimulus, respectively, such that ignoring the stimulus leads to a 50 percent decline in
the amplitude of component C2'. Without knowing the underlying component struc-
ture, it would be tempting to conclude from the ERP waveforms in panel D that the
attentional manipulation does not merely cause a decrease in the amplitude of com-
ponent C2’ but also causes: (1) a decrease in the amplitude of component C1’; (2) an
increase in the amplitude of component C3’; and (3) a decrease in the latency of com-
ponent C3’. In other words, the finding of an effect that overlaps with multiple peaks
in the ERP waveform tends to be interpreted as reflecting changes in multiple under-
lying components, but this is often not the case. Alternatively, you might conclude
from the waveforms in panel D that the attentional manipulation adds an additional,
long-duration component that would not otherwise be present at all. This would also
be an incorrect conclusion, which leads us to:

Rule #3 It is extremely dangerous to compare an experimental effect (i.e., the differ-
ence between two ERP waveforms) with the raw ERP waveforms.
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This example raises an important point about the relationship between amplitude
and latency. Although the amplitude and latency of a latent component are con-
ceptually independent, amplitude and latency often become confounded when ERP
waveforms are measured. Consider, for example, the relatively straightforward corre-
spondence between the peaks in panel A of figure 2.1 and the latent components in
panel B. Panel E shows the effects of increasing the amplitude of the first latent com-
ponent on the summed ERP activity. When the amplitude of component A is increased
by 50 percent, this creates an increase in the latency of both peak 1 and peak 2 in the
summed waveform; it also causes a decrease in the peak amplitude of peak 2. Panel F
illustrates the effect of doubling the amplitude of the component C3, which causes a
decrease in the amplitude and the latency of the second peak. Once again, this shows
how the peak voltage in a given time range is a poor measure of the underlying ERP
components in that latency range. This leads to our next rule:

Rule #4 Differences in peak amplitude do not necessarily correspond to differences
in component size, and differences in peak latency do not necessarily correspond to
changes in component timing.

In the vast majority of ERP experiments, the ERP waveforms are isolated from the
EEG by means of signal-averaging procedures. It is tempting to think of signal averag-
ing as a process that simply attenuates the nonspecific EEG, allowing us to see what the
single-trial ERP waveforms look like. However, to the extent that the single-trial wave-
form varies from trial to trial, the averaged ERP may provide a distorted view of the
single-trial waveforms, particularly when component latencies vary from trial to trial.
Panels G and H of figure 2.1 illustrate this. Panel G shows three single-trial ERP wave-
forms (without any EEG noise), with significant latency variability across trials; panel
H shows the average of those three single-trial waveforms. The averaged waveform
differs from the single-trial waveforms in two significant ways. First, it is smaller in
peak amplitude. Second, it is more spread out in time. In addition, even though the
waveform in panel H is the average of the waveforms in panel G, the onset time of the
averaged waveform in panel H reflects the onset time of the earliest single-trial wave-
form and not the average onset time. This leads to our next rule:

Rule #5 Never assume that an averaged ERP waveform accurately represents the
single-trial waveforms.

Fortunately, it is often possible to measure ERPs in a way that avoids the distor-
tions created by the signal-averaging process. For example, the area under the curve in
the averaged waveform shown in panel H is equal to the average of the area under the
single-trial curves in panel G. In most cases, measurements of area amplitude (i.e.,
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mean amplitude over a fairly broad time interval) are superior to measurements of peak
amplitude. Similarly, it is possible to find the time point that divides the area into two
equal halves, which can be a better measurement of latency than peak measures (see
Hansen & Hillyard, 1984; Luck, 1998).

It is worth mentioning that the five rules presented so far have been violated in a very
large number of published ERP experiments. There is no point in cataloging the cases,
especially given that some of my own papers would be included in the list. However,
violations of these rules significantly undermine the strength of the conclusions that
can be drawn from these experiments. For new students of the ERP technique, it would
be worth reading a large set of ERP papers and trying to identify both violations of
these rules and methods for avoiding the pitfalls that the rules address.

What Is an ERP Component?

So how can we accurately assess changes in latent components on the basis of the
observed ERP waveforms? Ideally, we would like to be able to take an averaged ERP
waveform and use some simple mathematical procedure to recover the actual wave-
forms corresponding to the components that sum together to create the recorded ERP
waveform. We could then measure the amplitude and the latency of the isolated com-
ponents, and changes in one component would not influence our measurement of
the other components. Unfortunately, just as there are infinitely many generator con-
figurations that could give rise to a given ERP scalp distribution, there are infinitely
many possible sets of latent components that could be summed together to give rise to
a given ERP waveform. In fact, this is the basis of Fourier analysis: any waveform can be
decomposed into the sum of a set of sine waves. Similarly, techniques such as principal
components analysis (PCA) and independent components analysis (ICA) use the cor-
relational structure of a data set to derive a set of basic components that can be added
together to create the observed waveforms. Localization techniques can also be used
to compute component waveforms at the site of each ERP generator source. Unfortu-
nately, these techniques have significant limitations, as we will discuss later in this
section (see also chapters 7, 9, and 15).

All techniques for estimating the latent components are based on assumptions about
what a component is. In the early days of ERP research, a component was defined pri-
marily on the basis of its polarity, latency, and general scalp distribution. For example,
the P3A and P3B components were differentiated on the basis of the earlier peak la-
tency and more frontal distribution of the P3A component relative to the P3B com-
ponent. However, polarity, latency, and scalp distribution do not really capture the
essence of a component. For example, the peak latency of the P3B component may
vary by hundreds of milliseconds, depending on the difficulty of the target-nontarget
discrimination (Johnson, 1986), and the scalp distribution of the auditory N1 wave
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depends on the pitch of the eliciting stimulus in a manner that corresponds with
the tonotopic map of auditory cortex (Bertrand, Perrin, & Pernier, 1991). Even polarity
may vary: The C1 wave, generated in area V1 of visual cortex, is negative for upper-
field stimuli and positive for lower-field stimuli due to the folding pattern of area V1 in
the human brain (Clark, Fan, & Hillyard, 1995). Consequently, most investigators now
define components in terms of a combination of computational function and neuro-
anatomical generator site. Consistent with this approach, my own definition of the
term ERP component is scalp-recorded neural activity that is generated in a given neuro-
anatomical module when a specific computational operation is performed. By this defini-
tion, a component may occur at different times under different conditions, as long as it
arises from the same module and represents the same cognitive function. The scalp
distribution and polarity of a component may also vary according to this definition,
because the same cognitive function may occur in different parts of a cortical module
under different conditions.

Techniques such as PCA and ICA use the correlational structure of an ERP data set
to define a set of components, and these techniques therefore derive components that
are based on functional relationships. Specifically, different time points are grouped
together as part of a single component to the extent they tend to vary in a correlated
manner, as would be expected for time points that reflect a common cognitive process.
The PCA technique, in particular, is problematic because it does not yield a single,
unique set of underlying components without additional assumptions (see, e.g., Rosler
& Manzey, 1981). That is, PCA really just provides a means of determining the possible
set of latent component waveshapes, but additional assumptions are necessary to de-
cide on one set of component waveshapes (and there is typically no way to verify that
the assumptions are correct). The ICA technique appears to be a much better approach,
because it uses both linear and nonlinear relationships to define the components.
However, any correlation-based method will have significant limitations. One limita-
tion is that when two separate cognitive processes covary, they may be captured as part
of a single component even if they occur in very different brain areas and represent
different computational functions. For example, if all the target stimuli in a given ex-
perimental paradigm are transferred into working memory, an ERP component asso-
ciated with target detection may always be accompanied by a component associated
with working memory encoding, and this may lead PCA or ICA to group them together
as a single component. Another very important limitation is that, when a component
varies in latency across conditions, both PCA and ICA will treat this single component
as multiple components. Thus, correlation-based techniques may sometimes be useful
for identifying latent ERP components, but they do not provide a magic bullet for
determining which components an experimental manipulation influences.

Techniques for localizing ERPs can potentially provide measures of the time course
of activity within anatomically defined regions. In fact, this aspect of ERP localization
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techniques might turn out to be as important as the ability to determine the neuro-
anatomical locus of an ERP effect. However, there are no foolproof techniques for
localizing ERPs at present, and we may never have techniques that allow direct and
accurate ERP localization. Thus, this approach to identifying latent ERP components is
not generally practical at present.

Avoiding Ambiguities in Interpreting ERP Components

The preceding sections of this chapter are rather depressing, because it seems that there
is no perfect and general method for measuring latent components from observed ERP
waveforms. This is a major problem, because many ERP experiments make predictions
about the effects of some experimental manipulation on a given component, and the
conclusions of these experiments are valid only if the observed effects really reflect
changes in that component. For example, the N400 component is widely regarded as a
sensitive index of the degree of mismatch between a word and a previously established
semantic context, and it would be nice to use this component to determine which of
two sets of words is perceived as being more incongruous. If two sets of words elicit
different ERP waveforms, it is necessary to know whether this effect reflects a larger
N400 for one set or a larger P3 for the other set; otherwise, it is impossible to determine
whether the two sets of words differ in terms of semantic mismatch or some other
variable (i.e., a variable to which the P3 wave is sensitive). Here I will describe six
strategies for minimizing factors that lead to ambiguous relationships between the
observed ERP waveforms and the latent components.

Strategy 1: Focus on a Specific Component

The first strategy is to focus a given experiment on only one or perhaps two ERP com-
ponents, trying to keep as many other components as possible from varying across
conditions. If 15 different components vary, you will have a mess, but variations in a
single component are usually tractable. Of course, sometimes a “fishing expedition’’ is
necessary when using a new paradigm, but don’t count on obtaining easily interpret-
able results in such cases. '

Strategy 2: Use Well-Studied Experimental Manipulations

It is usually helpful to examine a well-characterized ERP component under conditions
that are as similar as possible to conditions in which that component has previously
been studied. For example, the N400 wave was discovered in a paradigm that was in-
tended to produce a P3 wave. The fact that the experiment was so closely related to
previous P3 experiments made it easy to determine that the unexpected negative wave
was a new lcomponent and not a reduction in the amplitude of the P3 wave.



24 Steven J. Luck

Strategy 3: Focus on Large Components

When possible, it is helpful to study large components such as P3 and N400. When the
component of interest is very large compared to the other components, it will domi-
nate the observed ERP waveform, and measurements of the corresponding peak in the
ERP waveform will be relatively insensitive to distortions from the other components.

Strategy 4: Isolate Components with Difference Waves

It is often possible to isolate the component of interest by creating difference waves.
For example, imagine that you are interested in assessing the N400 for two different
classes of nouns, class 1 and class 2. The simple approach to this might be to present
one word per second, randomly choosing words from class 1 and class 2. This would
yield two ERP waveforms, one for each class, but it would be difficult to know if any
differences observed between the class 1 and class 2 waveforms were due to a change in
N400 amplitude or due to changes in some other ERP component. To isolate the N400,
one could redesign the experiment so that each trial contained a sequence of two
words, a context word and a target word, with the target word selected from class 1 on
some trials and from class 2 on others. In addition, the context and target words would
sometimes be semantically related and sometimes be semantically unrelated. The N400
could then be isolated by constructing difference waves in which the ERP waveform
elicited by a given word when it was preceded by a semantically related context word
is subtracted from the ERP waveform elicited by that same word when preceded by a
semantically unrelated context word. Separate difference waves would be constructed
for class 1 targets and for class 2 targets. Because the N400 is much larger for words
that are unrelated to a previously established semantic context, whereas most other
ERP components are not sensitive to the degree of semantic mismatch, these difference
waves would primarily reflect the N400 wave, and any differences between the class 1
and class 2 difference waves would primarily reflect differences in the N400 (for an ex-
tensive example of this approach, see Vogel, Luck, & Shapiro, 1998).

Although this approach is quite powerful, it has some limitations. First, differences
waves constructed in this manner may contain more than one ERP component. For
example, there may be more than one ERP component that is sensitive to the degree
of semantic mismatch, so an unrelated-minus-related difference wave might consist of
two or three components rather than just one. However, this is still a vast improve-
ment over the raw ERP waveforms, which probably contain at least 10 different com-
ponents. The second limitation of this approach is that it is sensitive to interactions
between the variable of interest (e.g., class 1 versus class 2 nouns) and the factor that is
varied to create the difference waves (e.g., semantically related versus unrelated word
pairs). If, for example, the N400 amplitude is 1 uV larger for class 1 nouns than for class
2 nouns, regardless of the degree of semantic mismatch, then the unrelated-minus-
related difference waves will be identical for class 1 and class 2 nouns. Fortunately,
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when two factors influence the same ERP component, they are likely to interact mul-
tiplicatively. For example, N400 amplitude might be 20 percent greater for class 1 than
for class 2, leading to a larger absolute difference in N400 amplitude when the words
are unrelated to the context word than when they are related. Of course, the inter-
actions could take a more complex form that would lead to unexpected results. For
example, class 1 words could elicit a larger N40O than class 2 words when the words
are unrelated to the context word, but they might elicit a smaller N400 when the
words are related to the context word. Thus, using difference waves can be very helpful
in isolating specific ERP components, but care is still necessary when interpreting the
results. It is also important to note that the signal-to-noise ratio of a difference wave
will be lower than those of the original ERP waveform:s.

Strategy 5: Focus on Components That Are Easily Isolated

The previous strategy advocated using difference waves to isolate FRP components.
This strategy can be further refined by focusing on certain ERP components that are
relatively easy to isolate. The best example of this is the lateralized readiness potential
(LRP), which reflects movement preparation and is distinguished by its contralateral
scalp distribution. Specifically, the LRP in a given hemisphere is more negative when a
movement of the contralateral hand is being prepared than when a movement of the
ipsilateral hand is being prepared, even if the movements are not executed. In an ap-
propriately designed experiment, only the motor preparation will lead to lateralized
ERP components, making it possible to form difference waves in which all ERPs are
subtracted away except for those related to lateralized motor preparation (see Coles,
1989; Coles et al., 1995). Similarly, the N2pc component for a given hemisphere is
more negative when attention is directed to the contralateral visual field than when it
is directed to the ipsilateral field, even when the evoking stimulus is bilateral. Because
most of the sensory and cognitive components are not lateralized in this manner, the
N2pc can be readily isolated (see, e.g., Luck et al., 1997; Woodman & Luck, 2003).

Strategy 6: Component-independent Experimental Designs

The best strategy is to design experiments in such a manner that it does not matter
which latent ERP component is responsible for the observed changes in the ERP wave-
forms. For example, Thorpe, Fize, & Marlot (1996) conducted an experiment in which
they asked how quickly the visual system can differentiate between different classes of
objects. To answer this question, they presented subjects with two classes of photo-
graphs, pictures that contained animals and pictures that did not. They found that the
ERPs these two classes of pictures elicited were identical until approximately 150 ms, at
which point the waveforms diverged. From this experiment, it is possible to infer that
the brain can detect the presence of an animal in a picture by 150 ms, at least for a
subset of pictures (note that the onset latency represents the trials and subjects with
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the earliest onsets and not necessarily the average onset time). This experimental effect
occurred in the time range of the N1 component, but it may or may not have been
a modulation of that component. Importantly, the conclusions of this study do not
depend at all on which latent component was influenced by the experimental manip-
ulation. Unfortunately, it is rather unusual to be able to answer a significant question
in cognitive neuroscience using ERPs in a component-independent manner, but one
should use this approach whenever possible (for additional examples of this approach,
see Hillyard et al., 1973; Luck, Vogel, & Shapiro, 1996; Miller & Hackley, 1992).

Avoiding Confounds and Misinterpretations

The problem of assessing latent components on the basis of observed ERP waveforms is
usually the most difficult aspect of the design and interpretation of ERP experiments.
There are other significant experimental design issues that are applicable to a wide
spectrum of techniques but are particularly salient in ERP experiments; these will be
the focus of this section.

One of the most fundamental principles of experimentation is to make sure that a
given experimental effect has only a single possible cause. One part of this principle is
to avoid confounds, but a subtler part is to make sure that the experimental manipu-
lation doesn’t have secondary effects that are ultimately responsible for the effect of
interest. For example, imagine you observed that the mass of a heated beaker of water
was greater than the mass of an unheated beaker. This might lead to the erroneous
conclusion that hot water has a lower mass than cool water, even though the actual
explanation is that some of the heated water turned to steam and escaped through the
top of the beaker. To reach the correct conclusion, it is necessary to seal the beakers
so that water does not escape. Similarly, it is important to ensure that experimental
manipulations in ERP experiments do not have unintended side effects that lead to an
incorrect conclusion.

To explore how this sort of problem may arise in ERP experiments, imagine an ex-
periment that examines the effects of stimulus discriminability on P3 amplitude. This
experiment presents letters of the alphabet foveally at a rate of one per second; the
subject is required to press a button whenever the letter Q is presented. Ten percent of
trials present a Q, whereas the other 90 percent present a randomly selected non-Q
letter. In addition, the letter Q never occurs twice in succession. In one set of trial
blocks, the stimuli are bright and therefore easy to discriminate (the bright condition);
in another set of trial blocks, the stimuli are very dim and therefore difficult to dis-
criminate (the dim condition).

There are several potential problems with this seemingly straightforward experi-
mental design, mainly due to the fact that the target letter (Q) differs from the non-
target letters in several ways. First, the target category occurs on 10 percent of trials,
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whereas the nontarget category occurs on 90 percent of trials. This is one of the two
intended experimental manipulations (the other being target discriminability). Second,
the target and nontarget letters are physically different from each other. Not only is the
target letter a different shape from the nontarget letters—and might therefore elicit a
somewhat different ERP waveform—the target letter also occurs more frequently than
any of the individual nontarget letters. To the extent that the visual system exhibits
long-lasting and shape-specific adaptation to repeated stimuli, it is possible that the
response to the letter Q will become smaller than the response to the other letters.
These physical stimulus differences probably won't have a significant effect on the P3
component, but they could potentially have a substantial effect on earlier components
(for a detailed example, see experiment 4 of Luck & Hillyard, 1994).

A third difference between the target and nontarget letters is that subjects make
a response to the targets and not to the nontargets. Consequently, any ERP differ-
ences between the targets and nontargets could be contaminated by motor-related ERP
activity. A fourth difference between the targets and the nontargets is that because the
target letter never occurred twice in succession, the target letter was always preceded
by a nontarget letter, whereas nontarget letters could be preceded by either targets or
nontargets. This is a common practice, because the P3 to the second of two targets
tends to be reduced in amplitude. Fliminating target repetitions is usually a bad idea,
however, because the response to a target is commonly very long-lasting and therefore
influences the waveform recorded for the next stimulus. Thus, there may appear to be
differences between the target and nontarget waveforms in the N1 or P2 latency ranges
that actually reflect the offset of the P3 from the previous trial, which is present only
in the nontarget waveforms under these conditions. This type of differential overlap
occurs in many ERP experiments, and it can be rather subtle. For an extensive discus-
sion of this issue, see Woldorff, 1988.

A fifth difference between the targets and the nontargets arises when one averages
the data and uses a peak amplitude measure to assess the size of the P3 wave. Specifi-
cally, because there are many more nontarget trials than target trials, the signal-to-
noise ratio is much better for the nontarget waveforms. The maximum amplitude of a
noisy waveform will tend to be greater than the maximum amplitude of a clean wave-
form because the noise has not been “averaged away” as well. Consequently, a larger
peak amplitude for the target waveform could be caused solely by its poorer signal-to-
noise ratio even if the targets and nontargets elicited equally large responses.

The manipulation of stimulus brightness is also problematic, because this will in-
fluence several factors in addition to stimulus discriminability. First, the brighter stim-
uli are, well, brighter than the dim stimuli, which may create differences in the early
components that are not directly related to stimulus discriminability. Second, the task
will be more difficult with the dim stimuli than with the bright stimuli. This may in-
duce a greater state of arousal during the dim blocks than during the bright blocks, and
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it may also induce strategy differences that lead to a completely different set of ERP
components in the two conditions. A third and related problem is that reaction times
will be longer in the dim condition than in the bright condition, and any differences in
the ERP waveforms between these two conditions could be due to differences in the
time course of motor-related ERP activity (which overlaps with the P3 wave).

There are two main ways to overcome problems such as these. First, one can avoid
many of these problems by designing the experiment differently. Second, it is often
possible to demonstrate that a potential confound is not actually responsible for the
experimental effect; this may involve additional analyses of the data or additional
experiments. As an illustration, let us consider several steps one could take to address
the potential problems in the P3 experiment described above:

1. One could use a different letter as the target for each trial block, so that across the
entire set of subjects, all letters are approximately equally likely to occur as targets or
nontargets. This solves the problem of having different target and nontarget shapes.

2. To avoid differential visual adaptation to the target and nontarget letters, one could
use a set of ten equiprobable letters, with one serving as the target and the other nine
serving as nontargets. Each letter would therefore appear on 10 percent of trials. If it
is absolutely necessary that one physical stimulus occurs more frequently than an-
other, it is possible to conduct a sequential analysis of the data to demonstrate that
differential adaptation was not present. Specifically, trials on which a target preceded
nontarget can be compared with trials on which a nontarget preceded nontarget. If no
difference is obtained—or if any observed differences are unlike the main experimental
effect—then the effects of adaptation are probably negligible.

3. Rather than asking the subjects to respond only to the targets, the subjects can be
instructed to make one response for targets and another for nontargets. Target and
nontarget RTs are likely to be different, so some differential motor activity may still
be present for targets versus nontargets, but this is still far better than having subjects
respond to the targets and not to the nontargets.

4. 1t would be a simple matter to eliminate the restriction that two targets cannot oc-
cur in immediate succession, thus avoiding the possibility of differential overlap from
the preceding trial. However, if it is necessary to avoid repeating the targets, it is possi-
ble to construct an average of the nontargets that excludes trials preceded by a target;
then both the target and the nontarget waveforms will contain only trials on which
the preceding trial was a nontarget.

5. There are two good ways to avoid the problem of peak amplitudes being larger
when the signal-to-noise ratio is lower. First, as discussed above, the peak of an ERP
waveform bears no special relationship to the corresponding latent component, so
there is usually no reason to measure peak amplitude. Instead, component amplitude
can be quantified by measuring the mean amplitude over a predefined latency range.
Mean amplitude has many advantages over peak amplitude, one of which is that it is
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not biased by the number of trials. If, for some reason, it is necessary to measure peak
amplitude rather than mean amplitude, it is possible to avoid biased amplitude mea-
sures by creating the nontarget average from a randomly selected subset of the non-
target trials such that the target and nontarget waveforms reflect the same number of
trials.

6. There is no simple way to compare the P3 elicited by bright stimuli versus dim
stimuli without contributions from simple sensory differences. However, simple con-
tributions can be ruled out by a control experiment in which the same stimuli are used
but are viewed during a task that is unlikely to elicit a P3 wave (e.g., counting the total
number of stimuli, regardless of the target-nontarget category). If the ERP waveforms
for the bright and dim stimuli in this condition differ only in the 50-250 ms latency
range, then the P3 differences observed from 300-600 ms in the main experiment
cannot easily be explained by simple sensory effects and must instead reflect an inter-
action between sensory factors (e.g., discriminability) and cognitive factors (e.g., what-
ever is responsible for determining P3 amplitude).

7. The experiment should also be changed so that the bright and dim stimuli are
randomly intermixed within trial blocks. In this way, the subject’s state of arousal
at stimulus onset will be exactly the same for the easy and difficult stimuli. This also
tends to reduce the use of different strategies.

8. It is possible to use additional data analyses to test whether the different waveforms
observed for the dim and bright conditions are due to differences in the timing of the
concomitant motor potentials (which is plausible whenever RTs differ between two
conditions). Specifically, if the trials are subdivided into those with fast RTs and those
with slow RTs, it is possible to assess the size and scalp distribution of the motor
potentials. If the difference between trials with fast and slow RTs is small compared to
the main experimental effect, or if the scalp distribution of the difference is different
from the scalp distribution of the main experimental effect, then this effect probably
cannot be explained by differential motor potentials.

Most of these strategies are applicable in many experimental contexts, and they re-
flect a set of general principles that are very widely applicable. I will summarize these
general principles in some additional rules: '

Rule #6 Whenever possible, avoid physical stimulus confounds by using the same
physical stimuli across different psychological conditions. This includes “context”
confounds, such as differences in sequential order.

Rule #7 When physical stimulus confounds are unavoidable, conduct control experi-
ments to assess their plausibility. Never assume that a small physical stimulus differ-
ence cannot explain an ERP effect (even at a long latency).
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Rule #8 Be cautious when comparing averaged ERPs that are based on different num-
bers of trials.

Rule #9 Be cautious when the presence or timing of motor responses differs between
conditions.

Rule #10 Whenever possible, vary experimental conditions within trial blocks rather
than between trial blocks.

Number of Trials and Signal-to-Noise Ratio

One of the most basic parameters to set when designing an ERP experiment is the
number of trials. When using conventional averaging, the size of the signal will remain
constant as more and more trials are added together, but the size of the noise will de-
crease. Thus, the overall signal-to-noise ratio increases when the number of trials
increases. The number of trials needed to obtain an acceptable signal-to-noise ratio will
depend on the size of the signal you are attempting to record and the noise level of the
data. If you are focusing on a large component such as the P3 wave, and you expect
your experimental manipulation to change the amplitude or latency by a large pro-
portion, then you will need relatively few trials. If, however, you are focusing on
a small component such as the N1 wave or you expect your experimental effect to be
small, then you will need a large number of trials. The noise level will also depend on
the nature of the experiment and the characteristics of the subjects (e.g., young chil-
dren and psychiatric patients typically have noisier signals than healthy young adults).

Experience is usually the best guide in selecting the number of trials. 1f you lack ex-
perience, then the literature can provide a guide (although you will want to see how
clean the waveforms look in a given paper before deciding to adopt the same number
of trials). Newcomers to the ERP technique usually dramatically underestimate the
number of trials needed to obtain a reasonable signal-to-noise ratio.

In my own lab, the rule of thumb is that we need 30-60 trials per condition when
looking at a large component such as the P3 wave, 150-200 trials per condition when
looking at a medium-sized component such as the N2 wave, and 400-800 trials per con-
dition when looking at a small component such as the P1 wave. When recording from
young children or psychiatric patients, you should try to double or triple these numbers.

It is important to realize that the relationship between the number of trials and
the signal-to-noise ratio is a negatively accelerated function. To be precise, if R is the
amount of noise on a single trial and N is the number of trials, the size of the noise in an
average of the N trials is equal to (1/ V/N) x R. In other words, the remaining noise in
an average decreases as a function of the square root of the number of trials. Moreover,
because the signal is assumed to be unaffected by the averaging process, the signal-to-
noise ($/N) ratio increases as a function of the square root of the number of trials.
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As an example, imagine an experiment in which you are measuring the amplitude of
the P3 wave, and the actual amplitude of the P3 wave is 20 pV (i.e., if you could mea-
sure it without any EEG noise). If the EEG noise is 50 pV on a single trial, then the S/N
ratio on a single trial will be 20:50, or 0.4 (which is not very good). If you average two
trials together, then the S/N ratio will increase by a factor of 1.4 (because v2 = 1.4). To
double the S/N ratio from .4 to .8, it is necessary to average together four trials (because
V4 = 2). To quadruple the S/N ratio from .4 to 1.6, it is necessary to average together
16 trials (because v/16 = 4). Thus, doubling the $/N ratio requires four times as many
trials, and quadrupling the S/N ratio requires 16 times as many trials. To get from a
single-trial S/N ratio of 0.4 to a reasonable S/N ratio of 10.0 would require 625 trials.
This relationship between the number of trials and the S/N ratio is rather sobering,
because it means that achieving a substantial increase in S/N ratio requires a very large
increase in the number of trials. This is why most ERP experiments need so many trials.

It is also important to do whatever you can to reduce the size of the noise in the raw
EEG. There are four main sources of noise. The first is EEG activity that is not elicited
by the stimuli (e.g., alpha waves). This source of noise can often be reduced by making
sure that the subjects are relaxed but alert. The second source is trial-to-trial variability
in the actual ERP components due to variations in neural and cognitive activity; this is
probably a minor source of variability in most cases, and it may be reduced by chang-
ing the task in ways that ensure trial-by-trial consistency.

The third source of noise is artifactual bioelectric activity, such as blinks, eye move-
ments, muscle activity, and skin potentials. Blinks and eye movements can be detected
and rejected during averaging, so they are not a large problem (unless a large propor-
tion of trials is rejected). Of the remaining sources of bioelectric noise, skin potentials
are probably the most significant problem. These potentials arise when the conduc-
tance of the skin changes (often due to perspiration) or the impedance of the electrode
suddenly changes (often due to head movements). These can be minimized by keeping
the recording environment cool and keeping electrode impedances low (high imped-
ance amplifiers will not help reduce this type of artifact). The final source of noise
is environmental electrical activity, such as line-frequency noise from video monitors
and other electrical devices. This can be minimized by means of extensive shielding
(e.g., video monitors can be placed inside shielded boxes). In general, it is worth
spending considerable time and effort to set up the recording environment in a way
that minimizes these sources of noise, because this can decrease the number of trials
and/or subjects in a given experiment by 30-50 percent.
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