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Abstract

We describe a method, based on recordings of the electroencephal¢BE@ and eye movement potentials
(electrooculogram to track where on a screér,y coordinatesan individual is fixating. The method makes use of an
empirically derived beam-forming filteiderived from a sequence of calibrated eye movemeatisolate eye motion

from other electrophysiological and ambient electrical signals. Electrophysiological researchers may find this method
a simple and inexpensive means of tracking eye movements and a useful complement to scalp recordings in studies of
cognitive phenomena. The resolution is comparable to that of many commercial systems; the method can be imple-
mented with as few as four electrodes around the eyes to complement the EEG electrodes already in use. This method
may also find some specialized applications such as studying eye movements during sleep and in human—machine
interfaces that make use of gaze information.

Descriptors: Eye tracking, Electrooculogram, Event-related brain potentials

There is ample evidence that much can be learned about humasive way of simultaneously tracking eye fixations and recording
information processing by monitoring where the eyes look and forevent-related brain potential€RP3. Commercial eye tracking
how long. Indeed, many different methods for tracking eye movesystems tend to be costly, and many rely on head-mounted devices
ments have been developed over the past 30 years. These incluttat interfere with the electrode placement, especially when caps
electrooculographyEOG; e.g., Mowrer, Ruch, & Miller, 1936; and nets are used in the collection of ERP data. The method we
Ong & Harman, 1979 corneal reflection(e.g., Monty, 1975; propose is simple, and requires very little extra time to set up, and
Muller, Cavegn, d'Ydewalle, & Groner, 1993limbus and pupil  only a few spare amplifiers beyond that used in a standard ERP
tracking (e.g., Eadie, Pugh, & Heron, 1994; Muller et al., 1993 experiment. The method provides good resolution, with mean error
contact lensesge.g., Ditchburn & Ginsborg, 1953and Purkinje  on the order of 1-2for patterns spanning 30This is within the
reflection imaging(e.g., Cornsweet & Crane, 1973; Muller et al., resolution limit of EOG data. According to Young and Sheena
1993. See Young and Sheerta975 for a review of methods. (1975, the precision with which EOG output reflects the actual
These methods vary greatly with respect to their resolution, rangeangle of gaze is withint 1.5—2°. The precision of our method is
tolerance to head motion, ease of use, invasiveness, and cost. Thughin this limit, meaning that it provides optimal resolution under
the method of choice is clearly dependent upon the purpose fathe EOG data constraints. The resolution obtained, nevertheless, is
which it is intended. comparable to that of many commercial eye trackers. Such reso-
In this article, we describe a method that can be used to trackution is sufficient for studying eye fixations during typical object,
an individual's eye fixations by recording activity from as few as face, or scene viewing and during reading of sufficiently large
four electrodes around the eyes and a modest complement oéxts.
electroencephalografEEG) electrodes on the scalp. The motiva- Using the EOG to track eye movements offers additional ad-
tion behind this method was to develop an unobtrusive, inexpenvantages. EOG recordings can be made relatively unobtrusively,
and can be easily done even if the individual is wearing glasses,
contacts, and other special eye wear, such as pilot goggles. As
C.A.J and M.K were supported by a research grant from the NIASUCh, EOG-based eye tracking may stand out in certain specialized
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itself, it provides a considerably larger range than many other eyéiscuss in Joyce et al. If one finds amplifier response characteris-
tracking methods. EOG recordings have a range on the order dfcs to be inconsistent among system channels or with respect to
+70°. That said, the relationship between EOG output and theéhe manufacturer rating, we suggest compensating for the AC
angle of gaze is linear only in a limited range. Estimates for thisamplifier distortions by estimating the distortion function empiri-
range vary fromt 15’ to 3C¢°, depending somewhat on the direction cally for each amplifier and for the given filter setting and then
of the gaze, that is, horizontal versus verti@h., Moses, 1975  applying the estimated correction factors to compensate for the
Because the method we describe is based on a learned relationshipft. In particular, using single-stage amplifiers, as we have done
between EOG output and the changes in the angle of gaze, it i® our study, we can set the frequency cutoff sufficiently low so
expected to apply in the range of learned response only. that we generate a linear amplifier response in our studies. The
In brief, the method determines whefiee., X,y coordinates on linear response is easy to estimate and rectify. We find our method
a display in front of therhan individual is fixating at any given alleviates the problem of signal distortion considerably. The effec-
moment by monitoring electric field changes generated by eydiveness of this correction procedure is illustrated in Figure 1. On
movements. The electric field is created by a charge differential ithe other hand, one can use EEG amplifiers specifically rated to
the eyeball. The cornea is positively charged relative to the retinaprovide true DC measurements by some means of DC coupling or
which amounts to having a steady retino-corneal charge of bebC restoration amplifiers, as was done in Morgan, Patterson, and
tween 0.4 and 1.0 mV that approximates a dipole in both eyes. Th&8impson(1999, to record saccadic eye movements.
dipole analogy is approximate because of distortions in the dipolar EOG recordings are also sensitive to muscle activity, EEG
properties caused by tissue irregularities in the eyes. As the retinactivity, and ambient electrical noise as well as movements of the
corneal axis rotates, the orientation of this dipole in three-eyelids and eyebrows. In the second half of this article, we discuss
dimensional space also rotates, resulting in changes in the electraur approaches to addressing these practical concerns. We settle on
field that can be picked up by electrodes placed around the eyes. set of preprocessing steps that are easy to automate and imple-
If we could determine the mapping between an eye movemenment as a single routine. Although we want to bring to readers’
and the associated change in the electric surface potentials, thewvareness the implementation issues related to using electrophys-
we could use these potentials as a tool to estimate the loci of ey®logical data, these issues are independent of the eye tracking
fixations. As it has proven difficult to characterize this correspon-filter that we propose here. We thus present these practical con-
dence theoretically, here we propose instead an empirical methoglderations in a separate section.
in which the correspondence is learned as participants perform a
calibrated series of eye movements. The calibrated series of movgfackgroun d
ments provides us with the spatial distribution of the associate
EOG and coincident EEG activity across the scalp for a known seBefore we present our empirical beam-forming method for track-
of eye motions. From these we compute the correspondence bag eye motion, we review the existing algorithms as background
tween arbitrary eye movements and changes in the electrical pder why we choose an empirical approach here. Using the EOG
tentials at the electrode sites and then relate those taxhe signal to track eye fixations involves isolating the electrical signals
coordinates of the eye fixations. The correspondence is computegenerated by eye movements from all other electrical sources.
in the form of a linear filter and can be applied to new E&EEG However, identifying sources of electrical activity using surface-
data(i.e., data not used in deriving the fil}ein order to extract recorded potentials is a difficult problem.
arbitrary, unknown eye movements or the correspondaiygco- Electric potentials recorded at surface sites represent the sum of
ordinates of the eye fixations. many electric signals that propagated to those surface sites and that
The accuracy of bioelectric-based measurement methods devere generated not only by movement of the eyes, but also that of
pends greatly on the attention paid to practical issues such as the
preprocessing needed to filter out noise and to compensate for
various distortions in the data. A challenging practical issue we
encountered in implementing our method stems from the fact that  *® : T T ' T : '
our laboratory uses AC amplifiers in data recording. Because AC
amplifiers are commonly used for EEG and EOG recordings, this 300
is a relevant issue to discuss here. AC amplifiers attenuate the DC
and slowly varying components in the data at the rate determined 200
by the amplifier time constant. Hence EOGs recorded via AC
amplifiers are visibly distorted. Some methods for correcting AC 100
distortions in EEG recordings can be found in Elbert and Rock-uv
stroh (1980 and Ruchkin(1993. We conducted an independent
study on this issue, which is presented in Joyce, Gorodnitsky,
Teder-Salejarvi, King, and Kutg2002. We find that the quality
of the amplifiers in various EEG systems can vary significantly,
and in some EEG systems, the filter characteristics of AC ampli-
fiers can vary considerably across individual channels, even when
each houses an identical AC ampilifier circuit. In these instruments,
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the amplifier responses also differ from the manufacturer-supplied =% o0 2000 3000 4000 5000 6000 7000 8000

specifications. It is therefore worthwhile to experimentally check time (msec)

amplifier responses in any given EEG setup and verify themrigure 1. The thin line shows one channel of EOG data prior to AC-to-DC
against the manufacturer-provided specifications. The true amplifiitering. The thick line shows the same channel after restoring the DC
fier response can be measured in several ways, some of which veignal that gets warped by the AC amplifier.
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eyebrows and eyelids, by brain activity, twitching muscles, andthis particular case is that the eye tracking application requires
sometimes the heartbeat, among other things. The way these sigrecision in identifying dipole orientation. Source localization meth-
nals propagate to the scalp is not trivial. Electric signals travelods are most commonly evaluated and compared in terms of their
through the various tissues of the head and face before reaching tidegree of spatial resolution, which is known to be limited. FEG
scalp surface and thus are attenuated to varying degrees dependiB@G resolution of the strength and field orientation of individual
on the conductive properties of the tissues. The exact distributiosources is even worse than the spatial resolution. This is because
and shape of the tissue through which the signals travel are pata) the ability to detect the signal itself depends on dipole orien-
ticular to each individual, and without knowledge of the exacttation, with the electric potential falling off rapidly as a dipole
tissue geometries, we cannot estimate the effects these tissues hawvtates to a more tangential position relative to the hifsack
on the signals. Thus, short of obtaining a detailed map of tissusurfacejb) contributions to EEGEOG measurements from neigh-
distribution in a person’s head, we cannot know exactly how theboring sources can cancel their fields to an unknown extent; and
signals attenuate to yield the data that we record. Moreover, iric) the errors in locating the source translate directly into errors in
strict mathematical terms, the problem of converting surface pothe estimate of source amplitya®ientation. The performance of
tentials into information concerning their underlying sources hassuch source localization methods is severely hampered, for exam-
long been known to be ill posed and thus to possess no uniquple, by the fact that the eye movement signals of interest overlap
solution. In other words, even with complete knowledge of elec-spatially with nearby eye signals generated by eyelid and eyebrow
trical and geometrical properties of the head, we cannot unequivmovements. In all, source localization methods do not appear to
ocally determine from surface potential information alone theprovide sufficient resolution to be practical for eye tracking.
sources that generate these potentials. PCA and BSS do not attempt to localize sources, but instead
Although numerous methods have been proposed to resolve trdiecompose data into separate components. PCA decomposes data
problem either by restricting the form of the solution or by looking into orthogonal components. Use of an orthogonal decomposition
beyond the time domain information, for example, differentiatingto separate ocular and frontal neural sources is supported by the
signals based on frequency and phase information, to date nlaypothesis that the dipolar charges associated with these two types
technique can claim complete and accurate source identificatiorof sources are approximately orthogonal to each other. The phys-
Because the signal of interest and the interfering signals haveeal orthogonality of dipole vectors, which are a function of the
overlapping frequency content, the latter set of methods does ndocation and orientation of each source, translates into algebraic
work well for finding eye movements, that is, there is no bandpas®rthogonality. Lagerlund, Sharbrough, and Busac¢ke87), how-
that will leave the signal of interest unabated while excluding theever, showed that PCA decomposition does not work well for
unwanted electrical activity. isolating ocular sources. This follows because the orthogonality of
Among the first category of methods, those that work by sources assumption is weak and brain activity is unlikely to have
restricting the particular form of the solution, there g&:source  the form of simple dipoles. ICA and more general BSS methods
modeling, the most well known of which are dipole modeling have only recently been applied to EEG degee Stone & Porrill,
methods(e.g., Berg & Scherg, 1991(b) solution modeling via 1998, for a simple introduction to ICA methgddCA methods
optimization constraints, for example, minimum norm constraints;attempt to decompose data into statistically independent compo-
and(c) component decomposition, most notably principal compo-nents. The crucial underlying assumption in applying these meth-
nents analysigPCA; Berg & Scherg, 1991and blind source ods is that the individual active cortical regions of excitation are
separation(BSS, with independent component analygiCA,; assumed to be statistically independent. This assumption, which
e.g., Vigario, 1997 being a subclass of BSS methods. The lattermany find objectionable, precludes feedback between the active
group of methods decomposes data into some set of mathemagaseas. Furthermore, the independence assumption clearly does not
cally defined components. The references cited here are those thapply to eye sources; the two ey@s., two different sourcgsend
relate to analysis of ocular activity rather than to EEG analysis, oto move conjunctively in typical behavioral experimefite., are
to the methodology per se. not independent and the neuronal activity involved in generat-
As the eyes can be considered two dipolar sources, one cang eye motion also is highly likely to be correlated with eye
imagine applying source localization methods from the first tvomovements. However, some BSS methods, for example, Second
groups of methods to extract the ocular sources and then ident@rder Blind Inferenc€SOBI) (Belouchrani et al., 1997 do not
fying changes in the source orientation from the changes in theequire statistical independence of sources and we find that these
field strength produced by these sources. The most relevant afiork better than ICA at separating ocular sources. It is difficult to
these methods are those that can model sources as activationsenfaluate the quality of separation by IZBSS algorithms because
neurons located within a small, compact area that in a limiting casene cannot verify by direct measurements the individual sources
can approximate a dipole. For a basic discussion of source locathat give rise to EEG data. Still, recent validation studies of ICA
ization methods see, for example, Kol€s998, and Miente, and BSS methods for electrophysiological source separation can
Urbach, Duzel, and Kuta@000, pp. 238-242 be found in Gorodnitsky2001) and Gorodnitsky and Belouchrani
To localize sources with high accuracy, one must model thg2001). Those studies demonstrate that currently available/ICA
exact conductivity properties of the head through which the elecBSS algorithms cannot extract the true physiological sources from
tric signals propagate. This requires detailed knowledge of th&EEG/EOG data.
distribution of tissues, including the geometry of the bone struc- Even if we were able to reliably resolve physiological sources
tures for each individual's head and face. Although methods nowia BSS, there are two other major drawbacks to using BSS
exist for obtaining realistic head models for localizing EEG sourcestechniques for detecting eye movements. First, BSS techniques can
the processing time and budget required to implement such apnly estimate the size of a particular eye movement relative to the
proaches renders them impractical for many cognitive studiesizes of the rest of the eye movements; in other words, they cannot
where the data from many individuals must be assessed. An espextract the absolute size of an eye movement. This then makes it
cially important consideration regarding the method of choice indifficult to find the actual sizes of the movements without some
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kind of reference. Second, the independent components identifiekhown Lead Field equation, details of which can be found in
by BSS are not ordered in a way that reliably specifies which one8urger and van Milaaii1946. Here it simply serves as a starting
are the ocular sources in any principled fashion. Although both ofpoint for our derivation.
these limitations can be overcome in practice by adopting various We are interested in finding a filteR, that can transform the
implementation strategies, we found such extensions of BBS to beurface potential dat® of Equation 2 into theq,y coordinates of
less practical and more unwieldy than the method we describéhe fixation points on some surface that the subject is viewing. Let
below. the x,y coordinates of the eye fixations over a periodNbtime
In summary, the existing methods for inferring sources frompoints be designated by aX2N matrix O. The first row of matrix
scalp potentials all rely on some theoretical assumptions about th® contains the sequence »fcoordinateg horizontal movement
sources themselves. By contrast, the method we propose does raoid the second row the corresponding sequengecabrdinates
rely on makingany assumptions about sources. Instead, we ascerfvertical movementof eye fixations, which are sampled ovir
tain the correspondence between the surface potentials and thiene points. Then the filteP that we seek satisfies the following
behavior of ocular sources empirically. We accomplish this byequation:
asking each subject to make a certain set of eye movements by
following a visual patterntemplat¢ on a computer screen and O =P=xD, (©)
then relating these eye movements to the changes in the measured
potentials. In so doing, we “learn” a general correspondence, in thwhereD is a matrix of data as described above.
sense that it can be applied to data generated by arbitrary eye The rows of the matrixO are simply a subset of the rows 8f
movements and not just those used to determine the correspofonverted intak,y coordinates. Therefore, the filtéris inversely
dence initially. The current method goes beyond merely correlatingelated to the matrie of Equation 2. The significance of this is
ocular movements with EOG measurements as it also adapts $batP, like F, depends only on the physical properties of the head
to ignore signals coming from sources other than the eye socke@nd not on the sources themselves. Once learned, it can be used to
To facilitate creating a filter that disregards electric signals due tdind any eye movements.
brain activity, we use a complementary set of EEG electrodes We find filter P as follows. We first present calibration patterns
measuring neural activity. As we later show, this is an important(predetermined sequences of fixatipos the viewing screen; we
component that helps our method achieve its high accuracy. Howask participants to track these with their eyes. Fixation points are
ever, although the filter “learns” to disregard nonocular sourcesdisplayed one at a time. As a new fixation appears, the previous
such as neural sources and heartbeat, that are present during ®iee disappears and participants move their eyes to the new fixation
template viewing, it does not adapt to those that are not presed@cation. Approximately 1-2 s are spent fixating on each point
during the template viewing, such as muscle twitches, that mighbefore it disappears and the next one appears in a new location. As
appear spontaneously during an experiment. these known eye movements are performed, we record the EOG
and EEG data, denoted here by a mabix. Thex,y coordinates
of the calibration patterns are also stored in tBematrix, as

Methods specified above. The filteP is then computed as

To derive the filter, we start with the standard model relating brain

sources to the scalp potential data. Conceptually, we can model the P = O Dm", (4)

slow bioelectric currents as distributions of infinitely small quasi-

stationary electric dipoles embedded within the conducting mediunwhereDm™ is the Moore—Penrose generalized inverse or pseudo-
of the head. Some bioelectric sources, such as the retino-corneiiverse ofbm (Barnett, 1990 For matrices that have full rank and
poles, can be assumed to be approximately single dipoles. Theontain more columns than rows, such as[bme matrix here, the
exact details of such a model are irrelevant to our purposes her@seudoinverse is defined @m* = Dm'(Dm * Dm")~%, where

In mathematical terms, giveN scalp electrodes and a single (Dm xDm')~* denotes the regular matrix inverse. This expression,
quasi-stationary dipole somewhere in the head carrying a clgarge however, does not provide a practical way of finding the pseudo-

we can write the received signB} at these electrodes as inverse of a large matrix that also contains noise. In the appendix,
we discuss a practical way of computing the pseudoinverse that
D,=FxS, ) also regularize§.e., prevents noise from dominatinie solution.

The filter P then can be applied to any new data in order to find

whereF is a so-called propagation matrix. Each rowFois called ~ the X,y coordinates of the fixations. LdDn,, denote some new

a Green’s functionF; tells how much of a signal at the sensors is data, digitized oveN time points. The 2< N matrix XY containing

generated from a chargg. the eye fixation coordinates ové time points is then simply
The contribution from all the dipole charges in the head isfound as

additive, meaning that we can write the total sigDaheasured by

the scalp electrodes as XY = P # Dpew= O * DM' % Dy (5)

D=F=xS, 2 Matrix XY is analogous in structure to timatrix in that the first
row contains thex (horizontal movementand the second row

where S denotes &K X N matrix of active dipole charges. The contains the (vertical movementcoordinates of the eye fixations
columns ofS are a series of snapshots of activity over time. Theon the viewing screen.
M X K matrix F describes the conductance effect of the medium, The experimental results we present in the next section validate
that is, an individual head, on the propagating electric sigals.  our proposal that the propagation filtBr derived with only one
anM X N matrix whose columns are snapshots of surface potentraining pattern, is a general filter capable of extracting arbitrary
tials atM electrodes oveN time points. Equation 2 is the well- eye fixations from the recorded EOG and EEG data.
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Note that the propagation filte? is specific to both the elec- not used to create the filter. The known coordinates of the new
trode arrangement and to the structure of an individual's head. lfemplates can be compared to the fixation coordinates extracted
the electrodes are reapplied, their positions may change and thesing the filter to give us an estimate of the error we can expect in
propagation factors for these new electrode locations would neetixation localization.
to be determined. Similarly, because individual head structures The following procedure was used to compute experimental
vary, propagation factors that depend on the individual tissuesrror bounds. A participant viewed the Figure 2 pattern 30 times
geometries also vary. ThuB,must be calculated for each individ- and another pattergsimilar in dimension but diamond rather than
ual and for each session in which electrodes are reapplied. Thequare shaped.O times. A propagation filter was computed using
method presented here, however, can be automated so that coB0 square pattern trials. This filter was then applied to each of the
puting the filter should not present a major difficulty. 10 diamond pattern trials. Differences between the fixation coor-

dinates marked on the screen and those extracted from the bio-

electric data were computed for each trial. This procedure was

applied to the data of 13 participants. Ferl8 horizontal eye
omovements, we obtained an error ofL..2 (SD. ~0.3%4, range:

Results

An example of the pattern used in our study is shown in Figure ; .
The pattern is a sequence of 10 fixation poifgmall crosshaing ~ 0-/4—3-4). For ~21° vertical eye movements, we computed an
each displayed sequentially on the screen for a duration of 1.5 £0r of 2.2 (SD: ~0.68, range: 1.8-5:3. Note that error rates
The distance between any sequential fixation points does nc}@nd to increase with larger eye movements, an_d that errors tend to
exceed 21vertically, 18 horizontally, and 1%diagonally in this P& larger for eye movements along the vertical axis than the
pattern. Such a calibration sequence yields good resolution, but wiPrizontal axis.

are currently investigating how performance may be improved 1he calculated error represents the sum of four errors—one
were we to use an even greater range of movement direction€oming from the eye fixations themselves not following the pattern

during filter learning. A detailed discussion of the issues concernxactly, the second occurring because the method of head stabil-

ing calibration sequence design is given in the next section ization we use still permits small head movements, and the third

With the appearance of each new fixation cross, the subject i§°Ming from inconsistency in the relationship between the EOG
instructed to saccade to the new location at/hés own rate. output and the angle of gaze.. For example, the relationship be-
Viewing is repeated several times with the same pattern. Thdeen EOG output and the horizontal angle of gaze f&38" arc
procedure can then be repeated using one or more different pa 2ccurate to withint1.5-2.0. The relationship between EOG
terns. Although it is not necessary to use more than one calibratioRUtPut and other directions of gaze is accurate within approxi-
pattern, doing so may produce a more robust filter estimate. As thg'2tely the same limitgYoung & Sheena, 1995The fourth error
subject tracks a pattern, we calculate the filter by associating th&!€MS from multiple sources of noise in the data, including new
changes in the,y coordinates of the pattern with the recorded sources such as spontaneous muscle twitches that may arise during

changes in the EEG and EOG, as explained in the section abov8" €xperiment, but not when the template is viewed. Naturally,
The filters for each individual trial are then averaged these four sources of error are also present when we first compute

We can estimate the accuracy of the propagation filter bythe filter. Thus one can think of these errors as contributing twice
determining how well it generalizes to the analysis of random!® Performance analysis, once when we obtain the filter and a
sequences of eye movements. Specifically, after creating an avef€¢0Nnd time when we calculate fixation points from data for a new
age filter using a pattern such as that shown in Figure 2, filtefoattern. Given that the resolution of EOG output itself is only

accuracy can be evaluated on data from different patterns that wetdthin +1.5-2.0, we find the performance obtained with this
method is rather impressive.

Practical Issues in Tracking Eye Fixations
T T T T T T T with Bioelectric Data

2001 1 Anumber of practical issues must be considered before any method

based on electric potentials can be put into operation. In the
Introduction, we addressed the issue of recording EOG signals via
100} 1 AC amplifiers. In this section, we begin by discussing issues

5 4 . . .
. ; related to data collection, including the number and placement of
sor i both EEG and EOG electrodes, the consequences of head motion,
ok 3 i and practical issues concerning the creation of a good calibration

! pattern. Next, we provide our approach to preprocessing the data,
-s0}- : including prefiltering, artifact correction, and changes in baselines
across the course of an experiment. Finally, we offer some sug-
gestions on how one might improve the accuracy and robustness of
the eye tracking filter, which can be affected by intertrial variability.
Although we wish to bring to readers an awareness of the
200} . implementation issues related to using electrophysiological data, it
) ) ) ) ) ) ) is important to note that our choices for dealing with these issues,
-300 -200 -100 ° 100 200 800 whether it be the choice of amplifiers to record DC signals or the
Figure 2. The pattern viewed by subjects during the EOG calibration Methods of prefiltering the data, are not an integral part of the eye
trials. Numbers indicate the order in which fixations locations were se-tracking filter that we propose here. Thus it is important to distin-
quentially presented. guish between these two different aspects of our proposal and we

=150 b
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ask that readers consider the preprocessing procedures in view séquence of fixation points occurs too quickly, subjects may not be
their relevance to their own setups. Naturally, implementationable to track them cleanly. On the other hand, if the fixations need
procedures can be improved further. Some of these problems cdn be held for a long duration, then the minute, uncontrollable
be removed altogether, for example, those due to AC amplifieadjustments of the eye needed for maintaining fixation will intro-

distortions, simply by using better equipment. That said, that ouduce unwanted noise into the signal. As a rule, it is impossible to
method performs within the limits of the resolution of EOG data keep the eyes completely stationary in any one position for any
says that any further gains from preprocessing procedures will dength of time.

best be minimal.

Electrodes.The empirical filter,P, not only learns to map the
eye movements from the EOG recordings but also to ignore all

(a) the number and placement of the EEG and EOG electrodesgignals that come from directions other than the eye socket. As

(b) the problem of head movement, afu the characteristics of discussed above, to improve the filters ability to disregard electri-

the calibration pattern needed for computing a reliable propa atiocal signals due to brain activity, clean measurements of this activ-
filter P puting propag ﬂy should be available for calculating the filter. The filter can be

optimized in this regard if EEG electrodes are placed to maximize

. . . .. the sampling of brain activity that is likely to be picked up by the
Practical aspects of creating patterns for learning the empiri- EOG electrodes around the eyes.

cal filter. The basis for the proposed method is to design an The electric field caused by ocular movement is strong in the

empirical filter by recording EOZEEG activity as subjects track icinity of the eyes, but attenuates differentially away from the
a known pattern presented to them on the screen with their eyes.)é\ s ACTOSS differer,u f the head. Fi 3 col 2 illus-
Y parts of the head. Figure 3, column 2, illus

key consideration here is to use patterns that the subjects can tra(f‘rates that relatively veridical, although somewhat noisy, eye move-

cleanly, in gther words, without maklng_extrane_ous €ye MOV ont signals can be extracted with only two EOG electrodes and
ments. For instance, we found that tracking a point being slowly . . -
a complement of EEG electrodes; namely, using one vertical elec-

traced on the screen is very difficult and leads to small, jittery . -
. trode above the left or the right eye and one horizontal electrode at
movements of the eye and many overshoots beyond the point thﬁ%e outer canthus of the left or right eye. Column 2 shows, in order

is being traced. This is true both when subjects make large moveé e movement data recorded using two eve electrodes each refer-
ments(greater than 20horizontally and 25vertically) and very Y 9 Y

, enced to the left mastoid together with no EEG channels, five
small movements. People’s eyes have a tendency to overgmubt
. L frontal EEG channels, three central and two lateral temporal EEG
in the case of large movements also undershdoe fixation

endpoint, going a little past it, followed by an adjustment moVe_channels, three parietal and two occipital EEG channels, or three

ment back to it. This is presumably because moving over Smalrnidline (frontal, central, parietaland two lateral temporal EEG
' P y 9 channels. Adding the five frontal EEG channels noticeably im-

distance does not provide sufficient time for the eyes to acceleratg
roves the extracted eye movements, and does so to a greater

and decele_rate oa s_top'and n the case (.)f making large mov%egree than any other combination of EEG channels. Adding a
ments, having a new fixation point a large distance away from the

- . complementary vertical electrodso that one is above the eye and
old one makes it difficult to estimate when to stop. Also, over large P y . Y
. . : . . - “one is below the eyeand a horizontalone on the outer canthus of
distances, people do not move their eyes in a straight line, tracin

. C 7 . ach eyg electrode, as in column 3, noticeably cleans up the
a small arc instead. Large eye motion is also not ideal because% ye y P

. . . - extracted eye movement signals. In fact, the addition of EEG
tends to elicit accompanying head motion. Finally, large eye move- . )
. S . channels to these four EOG channels does little to improve the

ments made while the head motion is restricted tend to cause o .
) o . - €xtracted eye movements. However, because noise is unpredict-
eyestrain, which in turn leads to minute, jittery eye movements - ; .
o . e able, addition of some frontal EEG channels is advisable to ensure

around fixation points and elsewhere. Any deviation from what the,

. ! L . . the cleanest possible signal. Column 4 illustrates that the addition
eye should be fixating on during training contributes to the error in . .
. ) . . of another pair of electrodes vertically, above and below the other
the computation of the filteP. Even minute errors in the eye

. ee/e does little to improve the performance of the propagation filter.
movement angle that are almost immeasurable nonetheless trans- : . A )
Comparing column 3 with column 1 in Figure 3 further illus-

late mtg S|gn|f|car_1t errors in fixations by the time they are CoN-y tes that better separation of EOG sources is obtained with
verted into coordinates on a screen that is located a significan . . . .

. monopolar(eye to mastoifl than bipolar EOG recordings. This
distance away from the eyes.

. . . . . follows from the fact that any offset in vertical or horizontal
Taking these factors into consideration, optimal patterns should ;. .
- . alignment of EOG electrodes will have no effect on monopolar
elicit moderately small eye movements where the subjects are . . ; .
L recordings, whereas it can corrupt the horizontal and vertical
allowed to saccade from one point in the pattern to the next at their . .
. . measures when respective electrode readings are subtracted from
own pace rather than having the movement trajectory traced for
T . -each other

them on the screen. We verified through a series of test that this . .

Thus, we recommend using the following monopolar elec-

design is the ea5|_est fqr a su_bject_ln terms of being able to move tht(?odes: two vertical EOG electrodésne above and one below the
eyes along a straight line. With this design, we can then extrapolate .
L ) - . €ye, two horizontal EOG electrodésn the outer canthus of each
movements between the fixation points along a straight line. )
! - eye, and five well-spaced frontal scalp electrodes.

To assure good filter precision, the patterns also need to cover
all the basic movement directions. Directions included in our
patterns are up, down, right, left, and diagonally across the screen, Head movementlt is natural for the head to move together
with only one or two repetitions of each direction. Figure 2 showswith eyes in the direction of gaze. These movements are mostly
an example of the pattern used in our study. unconscious and individuals therefore cannot restrain from making

Afinal note on the design. The timing of the presentation of thethem to some degree. A slight angle difference in eye movement
successive fixation points needs to be moderately paced. If thdue to the head adjustment becomes a large error by the time it is

Data Collection
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Horsontl T Horsental Friorsonal e lining the recorded data. Note that steps 1, 2, 4, and 5 must be
Bipolar Monopolar Mongcpolar Monopolar . . . . . . . .
carried out identically on calibration data prior to using it to create
the filter, and on the experimental data prior to applying the filter
No EEG @ @ for extracting eye movements. Step 3, adjusting for time delay,
only needs to be performed on calibration data prior to filter
creation.

Filtering. Electrophysiological data contain a fair amount of
@ high frequency artifacts, generated either by the equipment or
within the body. Filtering out some of these artifacts yields a better
propagation filter, although with some caveats as detailed below.
Bioelectric data are notoriously difficult to filter because they
are nonstationary and because the frequency content of the signal
@ often overlaps with that of the noise. The EOG signals due to

5 Frontal @
3 Central
2 Temporal
3 Parietal
2 Occipital
3 Midline
2 Temporal

ocular movement contain very low frequency, DC-like compo-
nents, punctuated by bursts of quick amplitude changes of high
frequency content that we cannot afford to lose by digital filtering
in the frequency domain. Due to this dichotomy in the frequency
content specific to the ocular movement signals, the following
wavelet-based filtering method was found to work well. Note,
@ however, that this method filters data quite heavily and is designed
specifically for these types of signals. It is not appropriate for
processing most other EEG signals.
First, the data at each sensor from each trial are decomposed
@ into several wavelet levels using a biorthogonal wavelet decom-

E

position (Sweldens, 1998 A spectral analysis is then performed
on all the wavelet levels to determine for which the maximal
contributing frequency exceeds 5 Hz. These levels are then low-
Figure 3. The extractedk,y coordinates for one trial of EOG data. The pass filtergd at 8 Hz using‘ a Butterworth filter. This filtgr eIim‘i-.
filters in rows 1-5 were created by addifa no EEG channelgp) five ~ nates the high frequency noise at these wavelet levels while retaining
frontal EEG channels(c) three central and two lateral temporal EEG their lower frequencies that may contain slow wave information
channels(d) three parietal and two occipital EEG channels(@rthree  that is crucial for maintaining information about the amplitude and
midline (frontal, central, parietaland two lateral temporal EEG channels morphology of the eye movements. We determine which of these
to the EOG channels. Columns 1-4 illustrate eye movement data extractefiitered levels contains meaningful slow wave signals in the fol-
when EOG information came froifa) one vertical(upper referenced to  |owing manner. First, the means of each filtered level and the
lower) and one horizonta(lleft referenced to rightbipolar EOG channel, remaining unfiltered levels are computed and divided by the sum
(b) one vertical and one horizontal monopolar EOG chafedérenced to of all the means; this results in a number that represents the

mastoid, (c) two vertical and two horizontal monopolar EOG channels, or . . .
(d) four vertical and two ho_rizontal monopolar EOG channels. Data aregrlc; F\)/c;tilsgli?;it:aetggirnew ;"3{;&:)'%OF;'Z)?;gzzﬁfi%welfzgi‘ﬁﬁ)n&;%ugs'
plotted over template coordinates. thatfiltered level is less than 0.0001. Finally, the “clean” data are
reconstructed by combining the remaining filtered levels with all
unfiltered levels. Note that this procedure does not eliminate all
frequency components above 5 Hz from the data, as unfiltered
translated into the screen fixation coordinates located several inchgsyels that are dominated by lower frequencies still contain high
away. frequency information associated with the sharp onsets and offsets
We chose to reduce head movements by stabilizing each sulst saccades. Figure 4 illustrates how this method was applied and
ject's head via a personalized dental impression palate fixed t0 8hows that the filtered signal retains the high frequency informa-
stationary surface, which the subject bites down on for the duratiomion necessary to preserve the morphology of saccades while at the
of the experiment. In the long run, correcting for head movemenkame time eliminating the non-saccade-related high-frequency noise.
with the aid of a head tracker is a more accurate, less intrusive, and Two points must be noted here. First, the Haar wavelet de-
more practical method. Several relatively inexpensive methodsgomposition is designed to filter boxcar-like ocular motion sig-
such as optically tracking a point on the head, provide sufficientlynas and thus may be constructed as a better filtering method for
high resolution and could be readily integrated with the FEGG our eye movement data. The issue, however, is not entirely
recordings proposed hei@.g. Origin Instruments Corporation, straightforward for this application. The filtering must be ap-

.S
YRR R

2000. plied very carefully so as not to eliminate the artifactual signals
from data which we actually would like the filter to learn to
Data Processing disregard when it later encounters them in the experimental

Surface potential data must be preprocessed in several steps. Thekga. The second point is that it is essential to apply the identi-
include, in order(1) filtering out noise,(2) correcting for blinks, cal filtering process during the learning stage when filter is

(3) adjusting the data in time to account for the delay in a subject'oeing created and subsequently when it is applied to new data.
response to the fixation stimulu@l) correcting for the distortions We found that the filtering method described here provides the
in the data introduced by the AC amplifier circuit, a(®) base- necessary consistency in the filtering process regardless of the
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Figure 4. Wavelet filtering sequence. The first column contains one channel of unfiltered EOG data. The second column contains the
levels of the biorthogonal wavelet decomposition ordered from the lowest to highest frequency bands. The third column contains the
spectral analysis of each wavelet level. The peak of the curve lies at the frequency contributing maximally to that level. The fourth
column contains the unfiltered low-frequency levéle top five levelsand the filtered high-frequency levekhe bottom five levels

In this example the bottom four levels were eliminated due to low power contribution to the low-frequency signal. The fifth level was
retained in its filtered fornibecause it contained enough low-frequency contamd recombined with the top five levels to create the
filtered data in the fifth column.

taxonomy of the eye movement pattern. The issue of optimal 7o T . T

filtering must be investigated further, however. ;
600 [ 4

Blink correction. Blinks are difficult to discriminate from oc- 500 -
ular motion because both originate, at random times, from essen-
tially the same spatial location, and because blinks produce electric
signals analogous to vertical saccades. Thus we eliminate blinks
prior to creating and applying the filter. We use a combined uv
polarity inversion detection and amplitude cut-off criterion be- 200
tween one upper and one lower vertical EOG electrode. The onset
and offset of each blink are determined by finding the point at
which the slope decreases to a certain level before and after the

400

RN

point of maximum polarity inversion, respectively. To ensure that ° w\/_]’ Y = "\/‘/\-‘-\,
double-peaked blinks will be corrected accurately, we set an ad- -wof . .
ditional criterion whereby the amplitude of the onset and offset

points has to be within one standard deviation of the data mean. 2% 500 1000 1500 2000

Correction consists simply of flattening the signal between the fime {msec)

markeq onset and pffset poir'(lsee' Figure b One can make the  Figure 5. One channel of vertical EOG data. The dashed line shows the
correction either with a sloping line or by putting in a step, asoriginal blink-contaminated data. The solid line shows the line of correc-
in Figure 5. In general, the exact path of the eye movemention resulting from the blink correction procedure.
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during a blink is neither known nor important to track. What is Construction and Generalization of the Filter
important is to recover the change in eye fixation after theOnce the data from pattern tracing have been preprocessed, it is a
blink, which our method provides. We choose to use a stefairly simple matter to apply Equation 3 to compute the filter. We
function in our implementation, as it is quite likely that a sac- have found, however, that eye movements in an individual cali-
cade would occur during a blink and a step function is a morebration sequence may contain too much jitter because the eyes
appropriate way to reflect this. deviate from a template pattern in a random fashion. To reduce the
impact of this random variability, we ask subjects to view the
Tempora| a”gnment of the data and the modeban take up template Several times. Separate filterS are Created for each VieW'
to a few hundred milliseconds for a person to program and initiatdNd, using Equation 3, and averaged together to derive the final
a saccade to each new fixation location in the learning patteriPropagation filter. As a rule, subjects become practiced, and there-
sequence. As a consequence, there is a temporal delay between fRE¢ more accurate over time, at tracking the template pattern.
eye movements as predicted by the model and the actual mové&igure 7 illustrates the noise reduction and improvement in eye
ment of the eydFigure 6, row J. movement extraction when the filter is computed using several
We use an automated method to temporally align the tworepetitions of the same pattern. Because the filter generalizes to
sequences. The time point of the first deflection from the initial @y movement sequence, an even better approach might be to use
fixation coordinates in either the X or Y direction is taken as themultiple viewings of several different pattern sequences, create
beginning of the first “saccade” in the calibration pattern. The Separate filters for each, and average the resulting filters across all
algorithm then looks for the largest amplitude change occurring ifémplates. This may reduce the contribution of noise in the eye
the data channel within the 400-ms window following that cali- movements due to a particular choice of template.
bration saccade along the corresponding éxisorizontal channel
for X and a vertical channel for )Y The difference in the latency Data Registration
of onset between the first model saccade and the correspondingle attempt to control for the appearance of spurious slow drifts in
first saccade in the recorded data is calculated and all data channéle recorded data at several stages of data processing. Nonetheless,
are shifted in time by that amoufiEigure 6, row 2. even after such precautions are taken, errors due to head move-
ments and residual amplifier drift can remain in the data. We thus

Baselining the dataBaselining is a standard step in processing further correct for these by asking subjects to fixate at a known
EEG data. The mean amplitude of activity during the prestimulus
interval is calculated and subtracted from all of the data points in
the recorded epoch. Baselining is performed separately for each
sensor for each trial. This is the final adjustment of raw data before X Coordinates Y Coordinates

the filter is created.
X Coordinates Y Coordinates
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Figure 6. X (column 2 and Y (column 2 coordinates extracted from one

trial of data and plotted over the model coordinates. The first row shows thd-igure 7. X, Y coordinates extracted using filters created from 1 trial
temporal difference between the model and the data due to the timéow 1), 5 trials (row 2), 10 trials(row 3), 20 trials(row 4), and 30 trials
required for saccade programming and execution. The second row showsow 5). Extracted X and Y coordinates are shown alGc@umns one and
the same data following temporal alignment. two) and plotted togethefcolumn threg over the model coordinates.
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location both at the beginning and the end of the stimulus presen- Each eye movement source is first decomposed into its wave-
tation. Two regression lines are then calculated: one between tHet levels (as described aboyeSaccade onsets and offsets ap-
initial and final fixation coordinates in the extracted eye move-pear as sharp peaks in many of the wavelet ley€igure 9,
ments, and another between the known initial and final fixationcolumn 2; they can be detected automatically by searching for
coordinates. The difference between these regression lines is subalues within each wavelet level that exceed 2 times its standard
tracted from the extracted eye movement coordinates with theeviation (horizontal lines in Figure 9, column)2We use the
consequence of aligning the extracted fixation coordinates with theoordinates of the fixations at the time of these saccades and
actual fixation coordinates. eliminate everything else in the eye movement sequence to re-
Application of this procedure is shown in Figure 8. The dis- duce it to a box-like time series that represents only the major
placement being corrected is quite large in this example and is prisaccadegFigure 9, column 8
marily due to the head movement. As we state above, this major
artifactin our data could be eliminated with the use of a head traCkebiscussion
This procedure often corrects the coordinate discrepancies in
extracted eye movemen(Bigure 8, rows 1 and)2although there  This report outlines a method for tracking an individual's eye
are obviously cases where the shifts in head position, for exampldixations (thex, y coordinateson a viewing screen using electrical
do not occur in a consistent manner throughout the experimensignals recorded via EOG and EEG electrodes. The method makes

and hence slow potential artifacts cannot be fully corre¢tég- use of an empirically derived filter, which is trained on a known

ure 8, columns 3 and)4 sequence of eye movements and which can then be used to analyze
random patterns of eye motions. This method has many advan-

Saccade Detection tages. For investigators already recording EEG data, little addi-

The steps outlined above attenuate much of the residual noise iional time, effort, and expense are required to simultaneously
the extracted eye movements. To clean up any small, irrelevanecord and then extract eye fixation coordinates. The method is
perturbations that may remain, we perform one additional step,
which involves detecting and delimiting saccades in the eye

movements.
Wavelets
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Figure 9. The saccade delimiting procedure. Column 1 shows one channel
Figure 8. Extracted X,Y coordinates plotted over the model. Rows 1 (X coordinate§ of extracted eye movement data. Column 2 shows the
and 2 show the same trial before and after registration, respectivelywavelet decompositions of that channel. Notice that the peaks in the
Rows 3 and 4 show another trial before and after registration. Notice invavelet levels correspond to saccade onsets and offsets in the extracted
row 4 that some types of drift error cannot be corrected by performingcoordinates. Column 3 shows the data reduction resulting from saccade
registration. delimiting.
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shown to perform within the limits of accuracy with which EOG to obtain the performance reported in this paper. Further improve-
output reflects the angle of gaze. Such resolution is sufficient forments in implementation are feasible. By far the biggest improve-
many types of experimental studies. A number of practical issuesnent would be to incorporate a high-resolution method for tracking
must be considered when using electric potential data. We presehtad movement, which would not only correct for head motion
a set of preprocessing steps that are easy to automate and that catifacts but also make the proposed method support more natural
be implemented as a single routine along with the proposed filteviewing of stimuli.
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partial SVD of its transpose, nameym!, as follows. The SVD of Uy and Sy denote matrices containing the fifgt columns ofU
the matrixDm!, expressed in terms of the matrices appearing inandS, respectively. The pseudoinverse is then found as
Equations 6 and 7 is

Dm* = Vy Sy tut (9)

Dm' = VSU'. (8)
Combining this partial SVD computation with the truncated SVD

From Equation 7, only the firsM columns ofV are needed to procedure discussed above reduces the number of columns of the
computeDm™. In the partial SVD ofDm!, we can compute only V, S, andU matrices used even further, thus reducing the compu-
these firstM columns ofV and stop the computation after that. Let tational complexity.



