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Abstract

We describe a method, based on recordings of the electroencephalogram~EEG! and eye movement potentials
~electrooculogram!, to track where on a screen~x,y coordinates! an individual is fixating. The method makes use of an
empirically derived beam-forming filter~derived from a sequence of calibrated eye movements! to isolate eye motion
from other electrophysiological and ambient electrical signals. Electrophysiological researchers may find this method
a simple and inexpensive means of tracking eye movements and a useful complement to scalp recordings in studies of
cognitive phenomena. The resolution is comparable to that of many commercial systems; the method can be imple-
mented with as few as four electrodes around the eyes to complement the EEG electrodes already in use. This method
may also find some specialized applications such as studying eye movements during sleep and in human–machine
interfaces that make use of gaze information.

Descriptors: Eye tracking, Electrooculogram, Event-related brain potentials

There is ample evidence that much can be learned about human
information processing by monitoring where the eyes look and for
how long. Indeed, many different methods for tracking eye move-
ments have been developed over the past 30 years. These include
electrooculography~EOG; e.g., Mowrer, Ruch, & Miller, 1936;
Ong & Harman, 1979!, corneal reflection~e.g., Monty, 1975;
Muller, Cavegn, d’Ydewalle, & Groner, 1993!, limbus and pupil
tracking ~e.g., Eadie, Pugh, & Heron, 1994; Muller et al., 1993!,
contact lenses~e.g., Ditchburn & Ginsborg, 1953!, and Purkinje
reflection imaging~e.g., Cornsweet & Crane, 1973; Muller et al.,
1993!. See Young and Sheena~1975! for a review of methods.
These methods vary greatly with respect to their resolution, range,
tolerance to head motion, ease of use, invasiveness, and cost. Thus
the method of choice is clearly dependent upon the purpose for
which it is intended.

In this article, we describe a method that can be used to track
an individual’s eye fixations by recording activity from as few as
four electrodes around the eyes and a modest complement of
electroencephalogram~EEG! electrodes on the scalp. The motiva-
tion behind this method was to develop an unobtrusive, inexpen-

sive way of simultaneously tracking eye fixations and recording
event-related brain potentials~ERPs!. Commercial eye tracking
systems tend to be costly, and many rely on head-mounted devices
that interfere with the electrode placement, especially when caps
and nets are used in the collection of ERP data. The method we
propose is simple, and requires very little extra time to set up, and
only a few spare amplifiers beyond that used in a standard ERP
experiment. The method provides good resolution, with mean error
on the order of 1–28 for patterns spanning 308. This is within the
resolution limit of EOG data. According to Young and Sheena
~1975!, the precision with which EOG output reflects the actual
angle of gaze is within6 1.58–28. The precision of our method is
within this limit, meaning that it provides optimal resolution under
the EOG data constraints. The resolution obtained, nevertheless, is
comparable to that of many commercial eye trackers. Such reso-
lution is sufficient for studying eye fixations during typical object,
face, or scene viewing and during reading of sufficiently large
texts.

Using the EOG to track eye movements offers additional ad-
vantages. EOG recordings can be made relatively unobtrusively,
and can be easily done even if the individual is wearing glasses,
contacts, and other special eye wear, such as pilot goggles. As
such, EOG-based eye tracking may stand out in certain specialized
applications where other techniques are hard to use. One example
is recording eye movements during sleep. The technique’s natural
coupling with EEG monitoring of cognitive activity likewise ren-
ders it a good candidate for applications such as human–machine
interfaces and on-line alertness monitoring. Finally, because EOG
does not require visualization~i.e., camera recording! of the eye
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itself, it provides a considerably larger range than many other eye
tracking methods. EOG recordings have a range on the order of
6708. That said, the relationship between EOG output and the
angle of gaze is linear only in a limited range. Estimates for this
range vary from6158 to 308, depending somewhat on the direction
of the gaze, that is, horizontal versus vertical~e.g., Moses, 1975!.
Because the method we describe is based on a learned relationship
between EOG output and the changes in the angle of gaze, it is
expected to apply in the range of learned response only.

In brief, the method determines where~i.e., x,y coordinates on
a display in front of them! an individual is fixating at any given
moment by monitoring electric field changes generated by eye
movements. The electric field is created by a charge differential in
the eyeball. The cornea is positively charged relative to the retina,
which amounts to having a steady retino-corneal charge of be-
tween 0.4 and 1.0 mV that approximates a dipole in both eyes. The
dipole analogy is approximate because of distortions in the dipolar
properties caused by tissue irregularities in the eyes. As the retino-
corneal axis rotates, the orientation of this dipole in three-
dimensional space also rotates, resulting in changes in the electric
field that can be picked up by electrodes placed around the eyes.

If we could determine the mapping between an eye movement
and the associated change in the electric surface potentials, then
we could use these potentials as a tool to estimate the loci of eye
fixations. As it has proven difficult to characterize this correspon-
dence theoretically, here we propose instead an empirical method
in which the correspondence is learned as participants perform a
calibrated series of eye movements. The calibrated series of move-
ments provides us with the spatial distribution of the associated
EOG and coincident EEG activity across the scalp for a known set
of eye motions. From these we compute the correspondence be-
tween arbitrary eye movements and changes in the electrical po-
tentials at the electrode sites and then relate those to thex,y
coordinates of the eye fixations. The correspondence is computed
in the form of a linear filter and can be applied to new EOG0EEG
data~i.e., data not used in deriving the filter! in order to extract
arbitrary, unknown eye movements or the correspondingx,y co-
ordinates of the eye fixations.

The accuracy of bioelectric-based measurement methods de-
pends greatly on the attention paid to practical issues such as the
preprocessing needed to filter out noise and to compensate for
various distortions in the data. A challenging practical issue we
encountered in implementing our method stems from the fact that
our laboratory uses AC amplifiers in data recording. Because AC
amplifiers are commonly used for EEG and EOG recordings, this
is a relevant issue to discuss here. AC amplifiers attenuate the DC
and slowly varying components in the data at the rate determined
by the amplifier time constant. Hence EOGs recorded via AC
amplifiers are visibly distorted. Some methods for correcting AC
distortions in EEG recordings can be found in Elbert and Rock-
stroh ~1980! and Ruchkin~1993!. We conducted an independent
study on this issue, which is presented in Joyce, Gorodnitsky,
Teder-Sälejärvi, King, and Kutas~2002!. We find that the quality
of the amplifiers in various EEG systems can vary significantly,
and in some EEG systems, the filter characteristics of AC ampli-
fiers can vary considerably across individual channels, even when
each houses an identical AC amplifier circuit. In these instruments,
the amplifier responses also differ from the manufacturer-supplied
specifications. It is therefore worthwhile to experimentally check
amplifier responses in any given EEG setup and verify them
against the manufacturer-provided specifications. The true ampli-
fier response can be measured in several ways, some of which we

discuss in Joyce et al. If one finds amplifier response characteris-
tics to be inconsistent among system channels or with respect to
the manufacturer rating, we suggest compensating for the AC
amplifier distortions by estimating the distortion function empiri-
cally for each amplifier and for the given filter setting and then
applying the estimated correction factors to compensate for the
drift. In particular, using single-stage amplifiers, as we have done
in our study, we can set the frequency cutoff sufficiently low so
that we generate a linear amplifier response in our studies. The
linear response is easy to estimate and rectify. We find our method
alleviates the problem of signal distortion considerably. The effec-
tiveness of this correction procedure is illustrated in Figure 1. On
the other hand, one can use EEG amplifiers specifically rated to
provide true DC measurements by some means of DC coupling or
DC restoration amplifiers, as was done in Morgan, Patterson, and
Simpson~1999!, to record saccadic eye movements.

EOG recordings are also sensitive to muscle activity, EEG
activity, and ambient electrical noise as well as movements of the
eyelids and eyebrows. In the second half of this article, we discuss
our approaches to addressing these practical concerns. We settle on
a set of preprocessing steps that are easy to automate and imple-
ment as a single routine. Although we want to bring to readers’
awareness the implementation issues related to using electrophys-
iological data, these issues are independent of the eye tracking
filter that we propose here. We thus present these practical con-
siderations in a separate section.

Background

Before we present our empirical beam-forming method for track-
ing eye motion, we review the existing algorithms as background
for why we choose an empirical approach here. Using the EOG
signal to track eye fixations involves isolating the electrical signals
generated by eye movements from all other electrical sources.
However, identifying sources of electrical activity using surface-
recorded potentials is a difficult problem.

Electric potentials recorded at surface sites represent the sum of
many electric signals that propagated to those surface sites and that
were generated not only by movement of the eyes, but also that of

Figure 1. The thin line shows one channel of EOG data prior to AC-to-DC
filtering. The thick line shows the same channel after restoring the DC
signal that gets warped by the AC amplifier.

608 C.A. Joyce et al.



eyebrows and eyelids, by brain activity, twitching muscles, and
sometimes the heartbeat, among other things. The way these sig-
nals propagate to the scalp is not trivial. Electric signals travel
through the various tissues of the head and face before reaching the
scalp surface and thus are attenuated to varying degrees depending
on the conductive properties of the tissues. The exact distribution
and shape of the tissue through which the signals travel are par-
ticular to each individual, and without knowledge of the exact
tissue geometries, we cannot estimate the effects these tissues have
on the signals. Thus, short of obtaining a detailed map of tissue
distribution in a person’s head, we cannot know exactly how the
signals attenuate to yield the data that we record. Moreover, in
strict mathematical terms, the problem of converting surface po-
tentials into information concerning their underlying sources has
long been known to be ill posed and thus to possess no unique
solution. In other words, even with complete knowledge of elec-
trical and geometrical properties of the head, we cannot unequiv-
ocally determine from surface potential information alone the
sources that generate these potentials.

Although numerous methods have been proposed to resolve the
problem either by restricting the form of the solution or by looking
beyond the time domain information, for example, differentiating
signals based on frequency and phase information, to date no
technique can claim complete and accurate source identification.
Because the signal of interest and the interfering signals have
overlapping frequency content, the latter set of methods does not
work well for finding eye movements, that is, there is no bandpass
that will leave the signal of interest unabated while excluding the
unwanted electrical activity.

Among the first category of methods, those that work by
restricting the particular form of the solution, there are:~a! source
modeling, the most well known of which are dipole modeling
methods~e.g., Berg & Scherg, 1991!; ~b! solution modeling via
optimization constraints, for example, minimum norm constraints;
and~c! component decomposition, most notably principal compo-
nents analysis~PCA; Berg & Scherg, 1991! and blind source
separation~BSS!, with independent component analysis~ICA;
e.g., Vigario, 1997! being a subclass of BSS methods. The latter
group of methods decomposes data into some set of mathemati-
cally defined components. The references cited here are those that
relate to analysis of ocular activity rather than to EEG analysis, or
to the methodology per se.

As the eyes can be considered two dipolar sources, one can
imagine applying source localization methods from the first two
groups of methods to extract the ocular sources and then identi-
fying changes in the source orientation from the changes in the
field strength produced by these sources. The most relevant of
these methods are those that can model sources as activations of
neurons located within a small, compact area that in a limiting case
can approximate a dipole. For a basic discussion of source local-
ization methods see, for example, Koles~1998!, and Müente,
Urbach, Duzel, and Kutas~2000, pp. 238–242!.

To localize sources with high accuracy, one must model the
exact conductivity properties of the head through which the elec-
tric signals propagate. This requires detailed knowledge of the
distribution of tissues, including the geometry of the bone struc-
tures for each individual’s head and face. Although methods now
exist for obtaining realistic head models for localizing EEG sources,
the processing time and budget required to implement such ap-
proaches renders them impractical for many cognitive studies
where the data from many individuals must be assessed. An espe-
cially important consideration regarding the method of choice in

this particular case is that the eye tracking application requires
precision in identifying dipole orientation. Source localization meth-
ods are most commonly evaluated and compared in terms of their
degree of spatial resolution, which is known to be limited. EEG0
EOG resolution of the strength and field orientation of individual
sources is even worse than the spatial resolution. This is because
~a! the ability to detect the signal itself depends on dipole orien-
tation, with the electric potential falling off rapidly as a dipole
rotates to a more tangential position relative to the head0face
surface;~b! contributions to EEG0EOG measurements from neigh-
boring sources can cancel their fields to an unknown extent; and
~c! the errors in locating the source translate directly into errors in
the estimate of source amplitude0orientation. The performance of
such source localization methods is severely hampered, for exam-
ple, by the fact that the eye movement signals of interest overlap
spatially with nearby eye signals generated by eyelid and eyebrow
movements. In all, source localization methods do not appear to
provide sufficient resolution to be practical for eye tracking.

PCA and BSS do not attempt to localize sources, but instead
decompose data into separate components. PCA decomposes data
into orthogonal components. Use of an orthogonal decomposition
to separate ocular and frontal neural sources is supported by the
hypothesis that the dipolar charges associated with these two types
of sources are approximately orthogonal to each other. The phys-
ical orthogonality of dipole vectors, which are a function of the
location and orientation of each source, translates into algebraic
orthogonality. Lagerlund, Sharbrough, and Busacker~1997!, how-
ever, showed that PCA decomposition does not work well for
isolating ocular sources. This follows because the orthogonality of
sources assumption is weak and brain activity is unlikely to have
the form of simple dipoles. ICA and more general BSS methods
have only recently been applied to EEG data~see Stone & Porrill,
1998, for a simple introduction to ICA methods!. ICA methods
attempt to decompose data into statistically independent compo-
nents. The crucial underlying assumption in applying these meth-
ods is that the individual active cortical regions of excitation are
assumed to be statistically independent. This assumption, which
many find objectionable, precludes feedback between the active
areas. Furthermore, the independence assumption clearly does not
apply to eye sources; the two eyes~i.e., two different sources! tend
to move conjunctively in typical behavioral experiments~i.e., are
not independent!, and the neuronal activity involved in generat-
ing eye motion also is highly likely to be correlated with eye
movements. However, some BSS methods, for example, Second
Order Blind Inference~SOBI! ~Belouchrani et al., 1997!, do not
require statistical independence of sources and we find that these
work better than ICA at separating ocular sources. It is difficult to
evaluate the quality of separation by ICA0BSS algorithms because
one cannot verify by direct measurements the individual sources
that give rise to EEG data. Still, recent validation studies of ICA
and BSS methods for electrophysiological source separation can
be found in Gorodnitsky~2001! and Gorodnitsky and Belouchrani
~2001!. Those studies demonstrate that currently available ICA0
BSS algorithms cannot extract the true physiological sources from
EEG0EOG data.

Even if we were able to reliably resolve physiological sources
via BSS, there are two other major drawbacks to using BSS
techniques for detecting eye movements. First, BSS techniques can
only estimate the size of a particular eye movement relative to the
sizes of the rest of the eye movements; in other words, they cannot
extract the absolute size of an eye movement. This then makes it
difficult to find the actual sizes of the movements without some
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kind of reference. Second, the independent components identified
by BSS are not ordered in a way that reliably specifies which ones
are the ocular sources in any principled fashion. Although both of
these limitations can be overcome in practice by adopting various
implementation strategies, we found such extensions of BBS to be
less practical and more unwieldy than the method we describe
below.

In summary, the existing methods for inferring sources from
scalp potentials all rely on some theoretical assumptions about the
sources themselves. By contrast, the method we propose does not
rely on makinganyassumptions about sources. Instead, we ascer-
tain the correspondence between the surface potentials and the
behavior of ocular sources empirically. We accomplish this by
asking each subject to make a certain set of eye movements by
following a visual pattern~template! on a computer screen and
then relating these eye movements to the changes in the measured
potentials. In so doing, we “learn” a general correspondence, in the
sense that it can be applied to data generated by arbitrary eye
movements and not just those used to determine the correspon-
dence initially. The current method goes beyond merely correlating
ocular movements with EOG measurements as it also adapts so
to ignore signals coming from sources other than the eye socket.
To facilitate creating a filter that disregards electric signals due to
brain activity, we use a complementary set of EEG electrodes
measuring neural activity. As we later show, this is an important
component that helps our method achieve its high accuracy. How-
ever, although the filter “learns” to disregard nonocular sources,
such as neural sources and heartbeat, that are present during the
template viewing, it does not adapt to those that are not present
during the template viewing, such as muscle twitches, that might
appear spontaneously during an experiment.

Methods

To derive the filter, we start with the standard model relating brain
sources to the scalp potential data. Conceptually, we can model the
slow bioelectric currents as distributions of infinitely small quasi-
stationary electric dipoles embedded within the conducting medium
of the head. Some bioelectric sources, such as the retino-corneal
poles, can be assumed to be approximately single dipoles. The
exact details of such a model are irrelevant to our purposes here.
In mathematical terms, givenN scalp electrodes and a single
quasi-stationary dipole somewhere in the head carrying a chargeSi

we can write the received signalDj at these electrodes as

Dj 5 F * Si , ~1!

whereF is a so-called propagation matrix. Each row ofF is called
a Green’s function.Fi tells how much of a signal at the sensors is
generated from a chargeSi .

The contribution from all the dipole charges in the head is
additive, meaning that we can write the total signalD measured by
the scalp electrodes as

D 5 F * S, ~2!

whereS denotes aK 3 N matrix of active dipole charges. The
columns ofS are a series of snapshots of activity over time. The
M 3 K matrix F describes the conductance effect of the medium,
that is, an individual head, on the propagating electric signals.D is
an M 3 N matrix whose columns are snapshots of surface poten-
tials at M electrodes overN time points. Equation 2 is the well-

known Lead Field equation, details of which can be found in
Burger and van Milaan~1946!. Here it simply serves as a starting
point for our derivation.

We are interested in finding a filter,P, that can transform the
surface potential dataD of Equation 2 into thex,y coordinates of
the fixation points on some surface that the subject is viewing. Let
the x,y coordinates of the eye fixations over a period ofN time
points be designated by a 23 N matrix O. The first row of matrix
O contains the sequence ofx coordinates~horizontal movement!
and the second row the corresponding sequence ofy coordinates
~vertical movement! of eye fixations, which are sampled overN
time points. Then the filterP that we seek satisfies the following
equation:

O 5 P * D, ~3!

whereD is a matrix of data as described above.
The rows of the matrixO are simply a subset of the rows ofS,

converted intox,y coordinates. Therefore, the filterP is inversely
related to the matrixF of Equation 2. The significance of this is
thatP, like F, depends only on the physical properties of the head
and not on the sources themselves. Once learned, it can be used to
find any eye movements.

We find filter P as follows. We first present calibration patterns
~predetermined sequences of fixations! on the viewing screen; we
ask participants to track these with their eyes. Fixation points are
displayed one at a time. As a new fixation appears, the previous
one disappears and participants move their eyes to the new fixation
location. Approximately 1–2 s are spent fixating on each point
before it disappears and the next one appears in a new location. As
these known eye movements are performed, we record the EOG
and EEG data, denoted here by a matrixDm. Thex,y coordinates
of the calibration patterns are also stored in theO matrix, as
specified above. The filterP is then computed as

P 5 O * Dm1, ~4!

whereDm1 is the Moore–Penrose generalized inverse or pseudo-
inverse ofDm ~Barnett, 1990!. For matrices that have full rank and
contain more columns than rows, such as theDm matrix here, the
pseudoinverse is defined asDm1 5 Dmt~Dm * Dmt!21, where
~Dm * Dmt!21 denotes the regular matrix inverse. This expression,
however, does not provide a practical way of finding the pseudo-
inverse of a large matrix that also contains noise. In the appendix,
we discuss a practical way of computing the pseudoinverse that
also regularizes~i.e., prevents noise from dominating! the solution.

The filterP then can be applied to any new data in order to find
the x,y coordinates of the fixations. LetDnew denote some new
data, digitized overN time points. The 23 N matrixXY containing
the eye fixation coordinates overN time points is then simply
found as

XY 5 P * Dnew5 O * Dmt * Dnew. ~5!

Matrix XY is analogous in structure to theO matrix in that the first
row contains thex ~horizontal movement! and the second row
contains they ~vertical movement! coordinates of the eye fixations
on the viewing screen.

The experimental results we present in the next section validate
our proposal that the propagation filterP, derived with only one
training pattern, is a general filter capable of extracting arbitrary
eye fixations from the recorded EOG and EEG data.
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Note that the propagation filterP is specific to both the elec-
trode arrangement and to the structure of an individual’s head. If
the electrodes are reapplied, their positions may change and the
propagation factors for these new electrode locations would need
to be determined. Similarly, because individual head structures
vary, propagation factors that depend on the individual tissue
geometries also vary. Thus,P must be calculated for each individ-
ual and for each session in which electrodes are reapplied. The
method presented here, however, can be automated so that com-
puting the filter should not present a major difficulty.

Results

An example of the pattern used in our study is shown in Figure 2.
The pattern is a sequence of 10 fixation points~small crosshairs!,
each displayed sequentially on the screen for a duration of 1.5 s.
The distance between any sequential fixation points does not
exceed 218 vertically, 188 horizontally, and 148 diagonally in this
pattern. Such a calibration sequence yields good resolution, but we
are currently investigating how performance may be improved
were we to use an even greater range of movement directions
during filter learning. A detailed discussion of the issues concern-
ing calibration sequence design is given in the next section.

With the appearance of each new fixation cross, the subject is
instructed to saccade to the new location at his0her own rate.
Viewing is repeated several times with the same pattern. The
procedure can then be repeated using one or more different pat-
terns. Although it is not necessary to use more than one calibration
pattern, doing so may produce a more robust filter estimate. As the
subject tracks a pattern, we calculate the filter by associating the
changes in thex,y coordinates of the pattern with the recorded
changes in the EEG and EOG, as explained in the section above.
The filters for each individual trial are then averaged.

We can estimate the accuracy of the propagation filter by
determining how well it generalizes to the analysis of random
sequences of eye movements. Specifically, after creating an aver-
age filter using a pattern such as that shown in Figure 2, filter
accuracy can be evaluated on data from different patterns that were

not used to create the filter. The known coordinates of the new
templates can be compared to the fixation coordinates extracted
using the filter to give us an estimate of the error we can expect in
fixation localization.

The following procedure was used to compute experimental
error bounds. A participant viewed the Figure 2 pattern 30 times
and another pattern~similar in dimension but diamond rather than
square shaped! 10 times. A propagation filter was computed using
30 square pattern trials. This filter was then applied to each of the
10 diamond pattern trials. Differences between the fixation coor-
dinates marked on the screen and those extracted from the bio-
electric data were computed for each trial. This procedure was
applied to the data of 13 participants. For;188 horizontal eye
movements, we obtained an error of;1.28 ~SD: ;0.348, range:
0.74–3.48!. For ;218 vertical eye movements, we computed an
error of 2.28 ~SD: ;0.688, range: 1.8–5.28!. Note that error rates
tend to increase with larger eye movements, and that errors tend to
be larger for eye movements along the vertical axis than the
horizontal axis.

The calculated error represents the sum of four errors—one
coming from the eye fixations themselves not following the pattern
exactly, the second occurring because the method of head stabil-
ization we use still permits small head movements, and the third
coming from inconsistency in the relationship between the EOG
output and the angle of gaze. For example, the relationship be-
tween EOG output and the horizontal angle of gaze for a6308 arc
is accurate to within61.5–2.08. The relationship between EOG
output and other directions of gaze is accurate within approxi-
mately the same limits~Young & Sheena, 1975!. The fourth error
stems from multiple sources of noise in the data, including new
sources such as spontaneous muscle twitches that may arise during
an experiment, but not when the template is viewed. Naturally,
these four sources of error are also present when we first compute
the filter. Thus one can think of these errors as contributing twice
to performance analysis, once when we obtain the filter and a
second time when we calculate fixation points from data for a new
pattern. Given that the resolution of EOG output itself is only
within 61.5–2.08, we find the performance obtained with this
method is rather impressive.

Practical Issues in Tracking Eye Fixations
with Bioelectric Data

A number of practical issues must be considered before any method
based on electric potentials can be put into operation. In the
Introduction, we addressed the issue of recording EOG signals via
AC amplifiers. In this section, we begin by discussing issues
related to data collection, including the number and placement of
both EEG and EOG electrodes, the consequences of head motion,
and practical issues concerning the creation of a good calibration
pattern. Next, we provide our approach to preprocessing the data,
including prefiltering, artifact correction, and changes in baselines
across the course of an experiment. Finally, we offer some sug-
gestions on how one might improve the accuracy and robustness of
the eye tracking filter, which can be affected by intertrial variability.

Although we wish to bring to readers an awareness of the
implementation issues related to using electrophysiological data, it
is important to note that our choices for dealing with these issues,
whether it be the choice of amplifiers to record DC signals or the
methods of prefiltering the data, are not an integral part of the eye
tracking filter that we propose here. Thus it is important to distin-
guish between these two different aspects of our proposal and we

Figure 2. The pattern viewed by subjects during the EOG calibration
trials. Numbers indicate the order in which fixations locations were se-
quentially presented.
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ask that readers consider the preprocessing procedures in view of
their relevance to their own setups. Naturally, implementation
procedures can be improved further. Some of these problems can
be removed altogether, for example, those due to AC amplifier
distortions, simply by using better equipment. That said, that our
method performs within the limits of the resolution of EOG data
says that any further gains from preprocessing procedures will at
best be minimal.

Data Collection
In this section, we discuss issues related to data collection, namely,
~a! the number and placement of the EEG and EOG electrodes,
~b! the problem of head movement, and~c! the characteristics of
the calibration pattern needed for computing a reliable propagation
filter.

Practical aspects of creating patterns for learning the empiri-
cal filter. The basis for the proposed method is to design an
empirical filter by recording EOG0EEG activity as subjects track
a known pattern presented to them on the screen with their eyes. A
key consideration here is to use patterns that the subjects can track
cleanly, in other words, without making extraneous eye move-
ments. For instance, we found that tracking a point being slowly
traced on the screen is very difficult and leads to small, jittery
movements of the eye and many overshoots beyond the point that
is being traced. This is true both when subjects make large move-
ments~greater than 208 horizontally and 258 vertically! and very
small movements. People’s eyes have a tendency to overshoot~and
in the case of large movements also undershoot! the fixation
endpoint, going a little past it, followed by an adjustment move-
ment back to it. This is presumably because moving over small
distance does not provide sufficient time for the eyes to accelerate
and decelerate to a stop and in the case of making large move-
ments, having a new fixation point a large distance away from the
old one makes it difficult to estimate when to stop. Also, over large
distances, people do not move their eyes in a straight line, tracing
a small arc instead. Large eye motion is also not ideal because it
tends to elicit accompanying head motion. Finally, large eye move-
ments made while the head motion is restricted tend to cause
eyestrain, which in turn leads to minute, jittery eye movements
around fixation points and elsewhere. Any deviation from what the
eye should be fixating on during training contributes to the error in
the computation of the filterP. Even minute errors in the eye
movement angle that are almost immeasurable nonetheless trans-
late into significant errors in fixations by the time they are con-
verted into coordinates on a screen that is located a significant
distance away from the eyes.

Taking these factors into consideration, optimal patterns should
elicit moderately small eye movements where the subjects are
allowed to saccade from one point in the pattern to the next at their
own pace rather than having the movement trajectory traced for
them on the screen. We verified through a series of test that this
design is the easiest for a subject in terms of being able to move the
eyes along a straight line. With this design, we can then extrapolate
movements between the fixation points along a straight line.

To assure good filter precision, the patterns also need to cover
all the basic movement directions. Directions included in our
patterns are up, down, right, left, and diagonally across the screen,
with only one or two repetitions of each direction. Figure 2 shows
an example of the pattern used in our study.

A final note on the design. The timing of the presentation of the
successive fixation points needs to be moderately paced. If the

sequence of fixation points occurs too quickly, subjects may not be
able to track them cleanly. On the other hand, if the fixations need
to be held for a long duration, then the minute, uncontrollable
adjustments of the eye needed for maintaining fixation will intro-
duce unwanted noise into the signal. As a rule, it is impossible to
keep the eyes completely stationary in any one position for any
length of time.

Electrodes.The empirical filter,P, not only learns to map the
eye movements from the EOG recordings but also to ignore all
signals that come from directions other than the eye socket. As
discussed above, to improve the filters ability to disregard electri-
cal signals due to brain activity, clean measurements of this activ-
ity should be available for calculating the filter. The filter can be
optimized in this regard if EEG electrodes are placed to maximize
the sampling of brain activity that is likely to be picked up by the
EOG electrodes around the eyes.

The electric field caused by ocular movement is strong in the
vicinity of the eyes, but attenuates differentially away from the
eyes across different parts of the head. Figure 3, column 2, illus-
trates that relatively veridical, although somewhat noisy, eye move-
ment signals can be extracted with only two EOG electrodes and
a complement of EEG electrodes; namely, using one vertical elec-
trode above the left or the right eye and one horizontal electrode at
the outer canthus of the left or right eye. Column 2 shows, in order,
eye movement data recorded using two eye electrodes each refer-
enced to the left mastoid together with no EEG channels, five
frontal EEG channels, three central and two lateral temporal EEG
channels, three parietal and two occipital EEG channels, or three
midline ~frontal, central, parietal! and two lateral temporal EEG
channels. Adding the five frontal EEG channels noticeably im-
proves the extracted eye movements, and does so to a greater
degree than any other combination of EEG channels. Adding a
complementary vertical electrode~so that one is above the eye and
one is below the eye! and a horizontal~one on the outer canthus of
each eye! electrode, as in column 3, noticeably cleans up the
extracted eye movement signals. In fact, the addition of EEG
channels to these four EOG channels does little to improve the
extracted eye movements. However, because noise is unpredict-
able, addition of some frontal EEG channels is advisable to ensure
the cleanest possible signal. Column 4 illustrates that the addition
of another pair of electrodes vertically, above and below the other
eye does little to improve the performance of the propagation filter.

Comparing column 3 with column 1 in Figure 3 further illus-
trates that better separation of EOG sources is obtained with
monopolar~eye to mastoid! than bipolar EOG recordings. This
follows from the fact that any offset in vertical or horizontal
alignment of EOG electrodes will have no effect on monopolar
recordings, whereas it can corrupt the horizontal and vertical
measures when respective electrode readings are subtracted from
each other.

Thus, we recommend using the following monopolar elec-
trodes: two vertical EOG electrodes~one above and one below the
eye!, two horizontal EOG electrodes~on the outer canthus of each
eye!, and five well-spaced frontal scalp electrodes.

Head movement.It is natural for the head to move together
with eyes in the direction of gaze. These movements are mostly
unconscious and individuals therefore cannot restrain from making
them to some degree. A slight angle difference in eye movement
due to the head adjustment becomes a large error by the time it is
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translated into the screen fixation coordinates located several inches
away.

We chose to reduce head movements by stabilizing each sub-
ject’s head via a personalized dental impression palate fixed to a
stationary surface, which the subject bites down on for the duration
of the experiment. In the long run, correcting for head movement
with the aid of a head tracker is a more accurate, less intrusive, and
more practical method. Several relatively inexpensive methods,
such as optically tracking a point on the head, provide sufficiently
high resolution and could be readily integrated with the EEG0EOG
recordings proposed here~e.g. Origin Instruments Corporation,
2000!.

Data Processing
Surface potential data must be preprocessed in several steps. These
include, in order,~1! filtering out noise,~2! correcting for blinks,
~3! adjusting the data in time to account for the delay in a subject’s
response to the fixation stimulus,~4! correcting for the distortions
in the data introduced by the AC amplifier circuit, and~5! base-

lining the recorded data. Note that steps 1, 2, 4, and 5 must be
carried out identically on calibration data prior to using it to create
the filter, and on the experimental data prior to applying the filter
for extracting eye movements. Step 3, adjusting for time delay,
only needs to be performed on calibration data prior to filter
creation.

Filtering. Electrophysiological data contain a fair amount of
high frequency artifacts, generated either by the equipment or
within the body. Filtering out some of these artifacts yields a better
propagation filter, although with some caveats as detailed below.

Bioelectric data are notoriously difficult to filter because they
are nonstationary and because the frequency content of the signal
often overlaps with that of the noise. The EOG signals due to
ocular movement contain very low frequency, DC-like compo-
nents, punctuated by bursts of quick amplitude changes of high
frequency content that we cannot afford to lose by digital filtering
in the frequency domain. Due to this dichotomy in the frequency
content specific to the ocular movement signals, the following
wavelet-based filtering method was found to work well. Note,
however, that this method filters data quite heavily and is designed
specifically for these types of signals. It is not appropriate for
processing most other EEG signals.

First, the data at each sensor from each trial are decomposed
into several wavelet levels using a biorthogonal wavelet decom-
position ~Sweldens, 1998!. A spectral analysis is then performed
on all the wavelet levels to determine for which the maximal
contributing frequency exceeds 5 Hz. These levels are then low-
pass filtered at 8 Hz using a Butterworth filter. This filter elimi-
nates the high frequency noise at these wavelet levels while retaining
their lower frequencies that may contain slow wave information
that is crucial for maintaining information about the amplitude and
morphology of the eye movements. We determine which of these
filtered levels contains meaningful slow wave signals in the fol-
lowing manner. First, the means of each filtered level and the
remaining unfiltered levels are computed and divided by the sum
of all the means; this results in a number that represents the
proportion of the overall signal power that each level contributes.
A level is eliminated only if the proportion of power contributed by
that filtered level is less than 0.0001. Finally, the “clean” data are
reconstructed by combining the remaining filtered levels with all
unfiltered levels. Note that this procedure does not eliminate all
frequency components above 5 Hz from the data, as unfiltered
levels that are dominated by lower frequencies still contain high
frequency information associated with the sharp onsets and offsets
of saccades. Figure 4 illustrates how this method was applied and
shows that the filtered signal retains the high frequency informa-
tion necessary to preserve the morphology of saccades while at the
same time eliminating the non-saccade-related high-frequency noise.

Two points must be noted here. First, the Haar wavelet de-
composition is designed to filter boxcar-like ocular motion sig-
nals and thus may be constructed as a better filtering method for
our eye movement data. The issue, however, is not entirely
straightforward for this application. The filtering must be ap-
plied very carefully so as not to eliminate the artifactual signals
from data which we actually would like the filter to learn to
disregard when it later encounters them in the experimental
data. The second point is that it is essential to apply the identi-
cal filtering process during the learning stage when filter is
being created and subsequently when it is applied to new data.
We found that the filtering method described here provides the
necessary consistency in the filtering process regardless of the

Figure 3. The extractedx,y coordinates for one trial of EOG data. The
filters in rows 1–5 were created by adding~a! no EEG channels,~b! five
frontal EEG channels,~c! three central and two lateral temporal EEG
channels,~d! three parietal and two occipital EEG channels, or~e! three
midline ~frontal, central, parietal! and two lateral temporal EEG channels
to the EOG channels. Columns 1–4 illustrate eye movement data extracted
when EOG information came from~a! one vertical~upper referenced to
lower! and one horizontal~left referenced to right! bipolar EOG channel,
~b! one vertical and one horizontal monopolar EOG channel~referenced to
mastoid!, ~c! two vertical and two horizontal monopolar EOG channels, or
~d! four vertical and two horizontal monopolar EOG channels. Data are
plotted over template coordinates.
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taxonomy of the eye movement pattern. The issue of optimal
filtering must be investigated further, however.

Blink correction.Blinks are difficult to discriminate from oc-
ular motion because both originate, at random times, from essen-
tially the same spatial location, and because blinks produce electric
signals analogous to vertical saccades. Thus we eliminate blinks
prior to creating and applying the filter. We use a combined
polarity inversion detection and amplitude cut-off criterion be-
tween one upper and one lower vertical EOG electrode. The onset
and offset of each blink are determined by finding the point at
which the slope decreases to a certain level before and after the
point of maximum polarity inversion, respectively. To ensure that
double-peaked blinks will be corrected accurately, we set an ad-
ditional criterion whereby the amplitude of the onset and offset
points has to be within one standard deviation of the data mean.
Correction consists simply of flattening the signal between the
marked onset and offset points~see Figure 5!. One can make the
correction either with a sloping line or by putting in a step, as
in Figure 5. In general, the exact path of the eye movement

Figure 5. One channel of vertical EOG data. The dashed line shows the
original blink-contaminated data. The solid line shows the line of correc-
tion resulting from the blink correction procedure.

Figure 4. Wavelet filtering sequence. The first column contains one channel of unfiltered EOG data. The second column contains the
levels of the biorthogonal wavelet decomposition ordered from the lowest to highest frequency bands. The third column contains the
spectral analysis of each wavelet level. The peak of the curve lies at the frequency contributing maximally to that level. The fourth
column contains the unfiltered low-frequency levels~the top five levels! and the filtered high-frequency levels~the bottom five levels!.
In this example the bottom four levels were eliminated due to low power contribution to the low-frequency signal. The fifth level was
retained in its filtered form~because it contained enough low-frequency content! and recombined with the top five levels to create the
filtered data in the fifth column.
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during a blink is neither known nor important to track. What is
important is to recover the change in eye fixation after the
blink, which our method provides. We choose to use a step
function in our implementation, as it is quite likely that a sac-
cade would occur during a blink and a step function is a more
appropriate way to reflect this.

Temporal alignment of the data and the model.It can take up
to a few hundred milliseconds for a person to program and initiate
a saccade to each new fixation location in the learning pattern
sequence. As a consequence, there is a temporal delay between the
eye movements as predicted by the model and the actual move-
ment of the eye~Figure 6, row 1!.

We use an automated method to temporally align the two
sequences. The time point of the first deflection from the initial
fixation coordinates in either the X or Y direction is taken as the
beginning of the first “saccade” in the calibration pattern. The
algorithm then looks for the largest amplitude change occurring in
the data channel within the 400-ms window following that cali-
bration saccade along the corresponding axis~a horizontal channel
for X and a vertical channel for Y!. The difference in the latency
of onset between the first model saccade and the corresponding
first saccade in the recorded data is calculated and all data channels
are shifted in time by that amount~Figure 6, row 2!.

Baselining the data.Baselining is a standard step in processing
EEG data. The mean amplitude of activity during the prestimulus
interval is calculated and subtracted from all of the data points in
the recorded epoch. Baselining is performed separately for each
sensor for each trial. This is the final adjustment of raw data before
the filter is created.

Construction and Generalization of the Filter
Once the data from pattern tracing have been preprocessed, it is a
fairly simple matter to apply Equation 3 to compute the filter. We
have found, however, that eye movements in an individual cali-
bration sequence may contain too much jitter because the eyes
deviate from a template pattern in a random fashion. To reduce the
impact of this random variability, we ask subjects to view the
template several times. Separate filters are created for each view-
ing, using Equation 3, and averaged together to derive the final
propagation filter. As a rule, subjects become practiced, and there-
fore more accurate over time, at tracking the template pattern.
Figure 7 illustrates the noise reduction and improvement in eye
movement extraction when the filter is computed using several
repetitions of the same pattern. Because the filter generalizes to
any movement sequence, an even better approach might be to use
multiple viewings of several different pattern sequences, create
separate filters for each, and average the resulting filters across all
templates. This may reduce the contribution of noise in the eye
movements due to a particular choice of template.

Data Registration
We attempt to control for the appearance of spurious slow drifts in
the recorded data at several stages of data processing. Nonetheless,
even after such precautions are taken, errors due to head move-
ments and residual amplifier drift can remain in the data. We thus
further correct for these by asking subjects to fixate at a known

Figure 6. X ~column 1! and Y~column 2! coordinates extracted from one
trial of data and plotted over the model coordinates. The first row shows the
temporal difference between the model and the data due to the time
required for saccade programming and execution. The second row shows
the same data following temporal alignment.

Figure 7. X, Y coordinates extracted using filters created from 1 trial
~row 1!, 5 trials ~row 2!, 10 trials~row 3!, 20 trials~row 4!, and 30 trials
~row 5!. Extracted X and Y coordinates are shown alone~columns one and
two! and plotted together~column three!, over the model coordinates.
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location both at the beginning and the end of the stimulus presen-
tation. Two regression lines are then calculated: one between the
initial and final fixation coordinates in the extracted eye move-
ments, and another between the known initial and final fixation
coordinates. The difference between these regression lines is sub-
tracted from the extracted eye movement coordinates with the
consequence of aligning the extracted fixation coordinates with the
actual fixation coordinates.

Application of this procedure is shown in Figure 8. The dis-
placement being corrected is quite large in this example and is pri-
marily due to the head movement. As we state above, this major
artifact in our data could be eliminated with the use of a head tracker.

This procedure often corrects the coordinate discrepancies in
extracted eye movements~Figure 8, rows 1 and 2!, although there
are obviously cases where the shifts in head position, for example,
do not occur in a consistent manner throughout the experiment,
and hence slow potential artifacts cannot be fully corrected~Fig-
ure 8, columns 3 and 4!.

Saccade Detection
The steps outlined above attenuate much of the residual noise in
the extracted eye movements. To clean up any small, irrelevant
perturbations that may remain, we perform one additional step,
which involves detecting and delimiting saccades in the eye
movements.

Each eye movement source is first decomposed into its wave-
let levels ~as described above!. Saccade onsets and offsets ap-
pear as sharp peaks in many of the wavelet levels~Figure 9,
column 2!; they can be detected automatically by searching for
values within each wavelet level that exceed 2 times its standard
deviation ~horizontal lines in Figure 9, column 2!. We use the
coordinates of the fixations at the time of these saccades and
eliminate everything else in the eye movement sequence to re-
duce it to a box-like time series that represents only the major
saccades~Figure 9, column 3!.

Discussion

This report outlines a method for tracking an individual’s eye
fixations~thex,y coordinates! on a viewing screen using electrical
signals recorded via EOG and EEG electrodes. The method makes
use of an empirically derived filter, which is trained on a known
sequence of eye movements and which can then be used to analyze
random patterns of eye motions. This method has many advan-
tages. For investigators already recording EEG data, little addi-
tional time, effort, and expense are required to simultaneously
record and then extract eye fixation coordinates. The method is

Figure 8. Extracted X,Y coordinates plotted over the model. Rows 1
and 2 show the same trial before and after registration, respectively.
Rows 3 and 4 show another trial before and after registration. Notice in
row 4 that some types of drift error cannot be corrected by performing
registration.

Figure 9. The saccade delimiting procedure. Column 1 shows one channel
~X coordinates! of extracted eye movement data. Column 2 shows the
wavelet decompositions of that channel. Notice that the peaks in the
wavelet levels correspond to saccade onsets and offsets in the extracted
coordinates. Column 3 shows the data reduction resulting from saccade
delimiting.
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shown to perform within the limits of accuracy with which EOG
output reflects the angle of gaze. Such resolution is sufficient for
many types of experimental studies. A number of practical issues
must be considered when using electric potential data. We present
a set of preprocessing steps that are easy to automate and that can
be implemented as a single routine along with the proposed filter

to obtain the performance reported in this paper. Further improve-
ments in implementation are feasible. By far the biggest improve-
ment would be to incorporate a high-resolution method for tracking
head movement, which would not only correct for head motion
artifacts but also make the proposed method support more natural
viewing of stimuli.
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APPENDIX: COMPUTATION OF THE
MOORE–PENROSE INVERSE

The Moore–Penrose inverse of a matrix can be computed with the
aid of a rank-revealing matrix decomposition, such as a singular
value decomposition~SVD!. The SVD of theM 3 N matrixDm in
Equation 3 is a product of three matrices

Dm 5 USVt , ~6!

where S is a M 3 N matrix containing singular values on its
diagonal and zeros otherwise andU andV are squareM 3 M and
N3 N matrices containing the left and right singular vectors of the
data, respectively. The pseudoinverse ofDm is then defined as

Dm1 5 VS21Ut . ~7!

There are two issues at stake here. First, when the matrixDm is
very “wide,” that is, having many more columns~time points! than
rows ~the number of channels!, its decomposition requires a large
number of computer operations, so that computing the pseudo-
inverse using Equation 7 directly is not advisable. Second, the
matrix Dm may be ill conditioned, meaning, among other things,
that the pseudoinverse would tend to amplify small noise in data.
For this reason, it is best to discard the smallest singular values
altogether in the matrixS. In this process, the right and left
singular vectors fromU and V corresponding to the discarded
singular values are also discarded. As a side benefit of this proce-
dure, the dimensions of the matrices can be significantly reduced,
simplifying the cost of computation. This method is called trun-
cated SVD~TSVD! regularization and a complete theory has been
developed around this subject, including how to select which
singular values to discard. For further information see Barnett
~1990!. To deal with the first issue, we suggest the following
algebraic trick to speed up the computation of the Moore–Penrose
inverse. Instead of computing SVD ofDm, we compute only a

Eye tracking with EOG and ERP 617



partial SVD of its transpose, namelyDmt, as follows. The SVD of
the matrixDmt, expressed in terms of the matrices appearing in
Equations 6 and 7 is

Dmt 5 VSUt . ~8!

From Equation 7, only the firstM columns ofV are needed to
computeDm1. In the partial SVD ofDmt, we can compute only
these firstM columns ofV and stop the computation after that. Let

UM andSM denote matrices containing the firstM columns ofU
andS, respectively. The pseudoinverse is then found as

Dm1 5 VMSM
21Ut . ~9!

Combining this partial SVD computation with the truncated SVD
procedure discussed above reduces the number of columns of the
V, S, andU matrices used even further, thus reducing the compu-
tational complexity.
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