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Abstract

ERP researchers use differences in scalp distributions to infer differences in spatial configurations of neuroelectric
generators. Since McCarthy and Wdd®85 demonstrated that a spatially fixed current source varying only in strength

can yield a significant Condition Electrode interaction in ANOVA, the recommended approach has been to normalize
ERP amplitudes, for example, by vector length, prior to testing for interactions. The assumptions of this procedure are
examined and it is shown via simulations that this application of vector scaling is both conceptually flawed and unsound
in experimental practice. Because different spatial configurations of neural generators cannot reliably be inferred from
different scalp topographies even after amplitude normalization, it is recommended that the procedure no longer be used
for this purpose.

Descriptors: Event-related potential, ERP, Amplitude normalization, Topography, Scalp distribution, Source
configuration

The ability to detect differences in the spatial distribution of ERP research{Picton et al., 2000 for purposes of identifying
cortically generated scalp potentials is a cardinal virtue of multi-distinct source configurations. This report reviews amplitude nor-
channel EEG recordings. In addition, for experiments designed tonalization and several key concepts related to these inferential
engage different brain systems, the reliable identification of disissues and then argues that amplitude normalization is unreliable in
tinct spatial configurations of neural generators may be a centrdts intended application in ERP research and that use of the pro-
concern. Differences between distributions of scalp potentials areedure should therefore be discontinued.

typically established by the finding of a statistically significant

interaction between Experimental Condition and Electrode Posi- . L o

tion in a repeated measures analysis of varid#d¢OVA ). How- Amplitude Normalization and Generator Distributions

ever, the inference from a reliable topographic difference in surfacgespite some recent debate about amplitude normalizétiaiy,
potentials to conclusions about the specific type of differences ingordon, & Hook, 1997; Ruchkin, Johnson, & Friedman, 1999

the neural generators is problematic. In an influential paper, Mcthorough exposition of the procedure’s motivation, justification,
Carthy and Wood 1989 showed that a Conditiorx Electrode  and consequences for EEG research has not appeared in the liter-
interaction alone is not sufficient grounds for inferring that the atyre. A number of procedures are plausible candidates for ampli-
spatial configurations of generators in the two conditions differ,yyde normalization, some are equivalent, others are (see
because such an interaction can result when a dipolar generator fhpendiy. Furthermore, it is not entirely clear that terms like the

a fixed spatial location varies only in strength. To protect againskstrength” and “spatial configuration” of neural generators and the

drawing this unwarranted conclusion, McCarthy and Wood pro-tgpography” and “topographic shape” of distributions of poten-
posed a vector scaling procedure that normalizes the overall ana|s are used consistently.

plitude of the distribution while preserving its topographic shape.
Amplitude normalization procedures have since come into WideGenerators Strengths, and Spatial Configurations

use and are explicitly recommended in published guidelines ofyeaizeq distributions of neural generators may be construed as
sets of point current sources and sinks of specified inte(stigngth
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the source. The field for multiple sinks and sources is the sum ohowever, the meaning may be less clear and, of course, whether or
the fields associated with each generator individually; some simpl@ot generator locations do, in fact, differ may depend on what is
examples of distributions of generators in a two-dimensional homomeant by “generator.” If “generator” refers to a dipole, there is a
genous conductor and their associated fields are illustrated in theense in which merely rotating the dipole 90 degrees does not
two left columns of Figure 1. change the location of the generator. However, if the positive and
Although the difference between strength and spatial configunegative poles are treated as a separate point source and point sink,
ration may seem straightforward, some simple examples illustrateotating the dipole does entail changes in generator locations.
how matters can become murky, particularly when strength isSimilar concerns arise in connection with what is meant by the
contrasted with spatial configuration. For instance, it makes dstrength” of a source. It seems clear enough that multiplying the
difference whether terms like “generator” or “source” refer to point intensity of the positive and negative poles of a dipole by a factor
sources, or to dipolar source—sink pairs in particular, or to somef two is a change in strength alone and not a change in spatial
other ensemble of current sources and sinks. In some cases, thenfiguration. However, when the poles are multiplied by a factor
intended usage may be clarified by context, for example, an assf —1, this change in strength is equivalent to rotating the dipole
sertion about the orientation of a generator presupposes an axis 880 degrees. If rotation counts as a change in the spatial config-
orientation that a point source does not have. In other casesiration of sources, then so must the equivalent polarity reversal;

A) Generator distributions differing only Unscaled potential Vector scaled Inference to source
in overall strength distributions distributions configurations
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Figure 1. Schematic illustration of the ambiguity of Condition Electrode interaction effects. The two leftmost columns show
generator distributions in two experimental conditions. Positive potentials generated by currentSoueceshaded lighter, negative
potentials generated by sinks) are shaded darker, and isopotential contour lines mark orders of magnitude. For simplicity, potentials
are assumed to vary with the inverse of the distance from the source. The rows of larg€opdition 1) and filled (Condition 2

circles indicate the “electrode” locations. The smaller open and filled circles in the line graphs indicate the values of the field at the
corresponding electrode locations for the Condition 1 and Condition 2 generator distributions. A: Generator distributions where the
locations and polarities are identical and each of the corresponding generators differ in strength between Conditions 1 and 2 by the same
scalar multiple, in this case a factor of 2. B: Generator distributions where the polarities and strengths are identical, but the location
of one of the dipoles is different. C: Generator distributions where the locations and polarities are identical but the generators differ
in relative strength.
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the result is both a difference in source strength and a difference imultiplies the strength of each generator in the distribution by the
spatial configuration. Other examples similarly strain the puta-same factor. Conditions 3a and 3b are mutually exclusive, that is,
tively obvious dichotomy between strength and spatial configuraany difference in generator intensity is a difference in overall
tion as well. Consider a strong dipole and a weak dipole somestrength or a difference in relative strength but not both. Condi-
distance apart in a volume conductor and, without any change itions 1, 2, and 3 are not mutually exclusive and differences in
location, suppose that the strength of the first dipole decrease whillcation, polarity, and strength can co-occur.
the strength of the second increases. The upshot of these changesThe relation between differences in the strength and differences
in strength is that the strong and weak dipoles effectively traden the spatial configuration of generators may be articulated in this
places. Depending on what one means by “spatial configuration,framework. The key relation involves two generator distributions
it might seem reasonable to treat this as a different spatial configthat differ only in overall strength and this case will be termed
uration of generators. However, because neither the locations ndmultiplicatively related,” that is:
polarities of any of the four poles have changed whatsoever, this
difference is also a difference in the strength alone. Here again, it Two generator distribution§;, G,, are multiplicatively related iff
seems that the distinction between differences in strength and
differences in spatial configuration, if there is one, is not entirely ;
clear and thus not especially informative. The following terms and
definitions provide a framework for articulating exactly what is 2. The polarities of the generators are all the same AND
happening in these and other cases.

The term "generator” will refer to a point current source at a3. The intensities of the generators differ in overall Strength, that
location with a polarity and a positive, nonzero intensignd be is, 3a above is satisfied.
represented as an ordered triple, that is, a genegatorL, p,i)
where the location vectdr gives the(x, y, z) coordinates in space, In this special case, the only difference betw&snand G, is a
polarityp = +1 or —1, and intensity is a real number strictl>0.  difference in the overall strength of the generators, that is, the
Requiring the intensity to be nonzero prevents phantom generatofgcations and polarities are all identical and there are no relative
that do not generate a field. A distribution of generatGrén a  differences in strength. The identity conditions for “spatial config-
volume conductor is defined as a set of generators, and two sualivations of generators” may, at last, be given as follows:
distributionsG; andG, are identical if and only if every generator
has the same location, polarity, and intensit@inas it does irG;. Two generator distributionS;, G, have the same spatial configuration
This regimentation segregates the three ways that distributions aff generators ifiG; and G, are multiplicatively related.
generators may differ, that is, with respect to the location, polarity,
or intensity of their constituent generators. When the intensity ofThis definition of spatial configuration may be illustrated in ap-
the generators i, differs from the intensity of the generators in plication to the examples introduced above. Rotating a dipole by
G,, there are two mutually exclusive cases: either the intensities i®0 degrees counts as a change in spatial configuration. Since
G; all differ by the same multiplicative factor from the correspond- rotation changes the location of the poles, the two distributions are
ing intensities inG, or they do not. This differentiation can be not multiplicatively related and, thus, the spatial configurations of
incorporated into an explicit characterization of conditions underthe generators differ. For the polarity reversal case, changing the

. The locations of the generators are all the same AND

which generator distribution&; and G, differ as follows: polarity of the poles is not a difference in strength as defined
above, so the generator distributions are not multiplicatively re-
Gy # G, iff lated. This case also counts as a difference in spatial configuration.

Finally, the generator distributions where the strong and weak
dipoles trade locationéstrengthspare also different spatial con-
figurations. Even though there is no difference in generator loca-
tion or polarity, the intensity of the first dipole changes by some
factor <1 and the intensity of the second dipole changes by some
) - ) factor >1. Because this is a difference in relative strength and not
3. The intensities of the generators differ overall strength, the distributions are not multiplicatively related,

a. in overall strength, that is, differ such that there is a singleang consequently, the two spatial configurations of generators
factorm > 0, m # 1, where, for each generatdg, = mig, differ.

1. The locations of the generators are not all the same OR

2. The polarities of the generators are not all the same OR

OR (exclusive It may not be immediately obvious that being multiplicatively
related and having the same spatial configuration are or should be
b. in relative strength, that is, the strengths of the generators ireated as equivalent, because it might be argued that a spatial
G, differ by different factors for different generators such configuration of generators should be defined by the location of
that there is no single facton as defined in a. the generators alone, regardless of generator strength. . Of course,
“spatial configuration of generators” has been defined by stipula-

Differences in overall strength are ana|ogous to having all genertion, and Other deﬁnitions are possible, but the definitions abOVe

ators ganged to a master gain control: Turning the gain up or dowhave two salient virtues. First, they give a principled way to
characterize exactly what is going on in the troublesome cases
o _ — ' — _ described at the outset. Second and more importantly, these defi-
Itis possible to fo'oc'j polarity in with '“tens'Wg’y a"lowmg "_“EI”S'E/ to Jnitions explicitly characterize the only sense of “different spatial
gfggﬁvgvggiﬁ?: 'tc'\;?] abne gg\?;g\éz; og;tzheer? VT,;;W g&?-trgiﬂ{;lr;;CIE;‘a:itj erJ] pnfigurations of gengrators" in which !t is true that Qistributional
intensity separately will make for a tidy separation of “strength” and differences that remain after normalizing the amplitude of scalp

“spatial configuration.” potentials entails that the spatial configurations of the correspond-
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ing generators are different. Thus, although other definitions mighthis relation follows from the definitions of spatial configuration,
be imagined, the definition of “spatial configuration of generators” topographic shape and the fact that the potentials at any point vary
articulated herein must be the one assumed in all previous papedirectly with source strength. If the location and polarity of the
that use vector scaling, if amplitude normalization is to establishgenerators are held constant and the strength differs by the same

that spatial configurations of generators differs. factor for all generators, that ig;, = mig,, the scalp distributions
also differ at each point by this facton. Thus, if proportional
Scalp Potential Distributions and Topographic Shape strengths of the generators are preserved, so are the proportional

The potential field at the surface of a bounded volume conductoamplitudes at the scalp, that is, the scalp distributions have the
may be spatially sampled, for example, by electrodes, at discreteame topographic shape. The form of this relation relevant for
locations. The values at these locations define a distribution ofnferences from topographic shape to spatial configurations of
potentials that may be represented as a Ve&toKv; ... v ... va), generators follows immediately:

i =1,2,...,a wherey; is the potential at locatiojy anda is the

number of electrodes. Assuming the same sensor locations, iden- If two distributions of surface potentia® andS, donothave the same

tity for two such distributionsS; and S, is simply identity of the  topographic shape, then the corresponding generator distrib@pasd
potentials at each location; distributions differ if they are not theGz do nothave the same spatial configuration.

same at every location.

The distribution of surface potentials in this sense must belhus, in the theoretical ideal, differences in topographic shape
clearly distinguished from the topographic shape and overall ampermit valid inference to the conclusion that the spatial configu-
plitude of such distributions. Whereas the distribution is given byrations of the generators diff@rovidedthat spatial configuration
the numerical magnitudes of the potentials at each location, this defined as above. Whether or not the remaining explanations
topographic shape of a distribution is determined by the relativeshould all be classified as differences in the spatial configuration of
magnitudes of the potentials across all locations. For instance, @€nerators is a semantic issue. This paper is agnostic on whether
distribution of surface potentials, = (2, 3, 5 is different from the spatial configuration nomenclature is appropriate and the aim
S, = (4, 6, 10 at all three locations, bu, andS, have the same here is just to clarify what does and does not follow about gener-
shapdtopography because their internal proportions are the same,ator distributions from differences in surface potential distributions.
that is, forS; andS;, vy /v, = 2/3 = 4/6,v1 /vz = 2/5 = 4/10, and
v2/vs = 3/5 = 6/10. Topographic shape and overall size behavery o \;44iyation for Amplitude Scaling of Scalp Potential
like familiar notions of geometric shape and size. If the sides of Distributions
triangle with lengths 2, 3, and 5 are multiplied by a factor of 2, the
overall size of the triangle changes but its shape is the sam€onventional recordings of human scalp potentials with macro-
because its original proportions are preserved. If the sides are nefectrodes have a temporal resolution on the order of a millisecond,
all multiplied by the same factor, the original proportions are nota spatial resolution on the order of a centimeter at the scalp, and
preserved and the geometric shape changes. For topographic shagecades of research have consistently demonstrated their sensitiv-
identity of internal proportions may conveniently be expressed inity to differences in perceptual and cognitive tasks. Any experi-
terms of scalar multiplication of the distributiofigectors: mental measure with these properties would thus be of tremendous
experimental value regardless of the physiological processes re-
sponsible for the effects. The fact that scalp potentials are gener-
ated by the electrochemical activity of the neural tissues that are
actually doing the perception and cognition as they are doing it is

In what follows, “topographic shape” and “topography” are used toan a_d_ded bor_lus. Thu_s, n ad_dl_tlon tq their '””'r.‘s'c value as f"‘
sensitive, noninterruptive, multidimensional, real-time measure, it

refer exclusively to the shape of a distribution rather than the erv tempting to draw inferences from scalp potentials to active
distribution itself. In this usage, the distributioBsandS, imme- IS very pting Wi S scaip p 1als v

diately above differ, but have the same topographic shape, that i%rain areas, that is,_ neural gene_ra_tors. It _is gr_lcontro_versial that in

the same topography. e absence qf a_lrtlfe_lcts, a stat_lstlcally S|gn|f|car1t_ difference be-

tween scalp distributions established by a Conditioilectrode

Generator Distributions and Surface Potential Distributions interact_ion _S““‘C?S to show that the distributions of neural gener-

For present purposes, there are two key inferential relations be"’-lkforfS d'ﬁir‘ that is, as above,_ﬁl # SZ then_gl # Go. _HOV\I/ever,

tween distributions of generators and distributions of scalp potenE € a_ct t. at two_generator_dlstrlbgtlons di Er may involve s_°me

tials. The first may be expressed as follows: C(_)mb_lnatlon_ of dlfferen_ces in location, po_lanty, and strehgth, dis-
tributional differences in surface potentials show nothing more

specific than this. Distributional differences in surface potentials

~ Iftwo generator distribution®, andG, are the same, the correspond- may, for example, be the result of differences only in the overall

ing distributions of surface potentia and$; are the same. strength of generators and there may be no difference whatsoever
in their spatial configuration. This issue was first addressed by

Thus, when two distributions of surface potentials differ, it follows Hansen and Hillyard1980 and, subsequently, by McCarthy and

that the corresponding generator distributions differ. The relationnood (1985. The inferential problem is summarized in Figure 1,

between spatial configurations of generators and topographic shagehich schematically illustrates three ways in which distributional

is as follows: differences between conditions might be generated. In all three
comparisongFigure 1A, 1B, and 1§ the difference between the

If two generator distribution§; andG, have the same spatial config- WO conditions is larger at some “electrodes” than others and, with
uration, the corresponding distributions of surface potenSzmdS, have sufficient statistical power, all would yield significant Conditizn
the same topographic shape. Electrode interactions in an ANOVA. For the comparison in Fig-

The topographic shape of distributions of surface poten8abBnd S,
is the same iff there is some scalar multipkesuch thatS; = mS.
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ure 1A, the location and polarity of the generators is identical ineffect (Picton et al., 2000, and see also our Figure 1C and Fig-
both conditions and the two distributions differ only in overall ure 7.2 Thus amplitude normalization is not a follow-up procedure
strength. For the comparison in Figure 1B, the locations, hencéhat must be conducted to ensure that distributional differences
spatial configuration, of the generators differs between conditionsresponsible for significant Conditior Electrode interaction ef-
The dipole closest to sensor C is shifted toward sensor F irects are statistically reliable. For some important types of infer-
Condition 2. In Figure 1C, a case that will be important for ence in ERP research, amplitude scaling distributions of scalp
subsequent discussion, the location and polarity of the generatopotentials is neither required nor appropriate. Indeed, inappropriate
is the same in both conditions, but the generators differ in relativeapplication of the procedure can lead to errors when determining
strength because some of thénoth poles of the dipole farthestto the locations where experimental effects occur.
the righy have the same strength in both conditions whereas the
others change in strength. Because of this difference in relativ
strength, the spatial configurations of the generators differ eve
though their locations and polarity do not. Distributions of scalp potentials were defined above as the mag-
The difficulty inferring different spatial configurations of gen- hitudes at a set of scalp locations and represented as a vector,
erators from distributional differences in scalp potentials arisesS = (v1 ... va). As detailed in the Appendix, amplitude normal-
because a Conditior Electrode interaction effect may be found ization by vector scaling is a two step process that first projects
in cases like those in Figure 1A where the generators differ only ifPotentials measured at theaescalp electrodes onto the axes in
overall strength, so clearly, this test alone cannot reliably distin2n &-dimensional vector space. The vector representation of the
guish such a case from cases where the spatial configuratiorféistribution of potentials affords a perfectly general and math-
actually do differ. Thus, where the research question requires th&matically precise characterization of topographic shape and over-
differences in overall generator strength be ruled out as an explall amplitude: Shape corresponds to vector orientation and
nation of differences in scalp distributions, ANOVA conducted on @mplitude corresponds to vector length. The length of a vector
scalp potentials is inadequate. To rule out differences in overalpnd its orientation can vary independently and orientation can be
generator strength and thereby sharpen the Conc|usions drav\ll'}eld constant under transformations that Change vector Iength
from Condition X Electrode interactions, McCarthy and Wood
(1985 considered three ana!yyc procedurgs and as a genergl SO- 2Recognizing how these distributional distortions can arise is a special
lution, recommended normalizing the amplitude of the distributioncase of understanding how amplitude normalization transforms scalp dis-
of potentials in each experimental condition by vector length. tributions in general. For instance, it appears to be widely accepted that a
Before introducing the details of the vector scaling procedurepopular type of vector scaling eliminates the main effect of condition.

an important distinction should be emphasized. When comparin Ithough this is true when distributions have the same topographic shapes,
hen the topographic shapes differ, there may or may not be a residual

distributions of scalp potentials in different experimental condi- najn effect of Conditior{and for that matter there may or may not be a
tions, two types of question must be clearly distinguished. First, daonditionx Electrode interaction effectThe point can be illustrated by a
the distributions differ between the experimental conditions? Secsimple example with two scalp distributio®s and S, for two conditions
ond, in what way or ways do the neural generators differ betwee@"d three electrode locations:

the experimental conditions? For many research purposes, it suf-

S/ector Scaling

fices to determine whether there are reliable distributional differ- S, =(-2.323,-1.333, 1.267
ences at the scalp, and if so where they occur, that is, at which
electrode locations. For instance, on most accounts, the distribu- S, =(—1.463,0.517, 5.717

tion of an ERP effect over the scalp is criterial for component _ _
individuation. In oddball paradigms, for example, the P3b elicitedThe vector length$S,| and S| for S, and S, respectively, are given by
by low probability targets and the P3a elicited by novel stimuli are

distinguished in part by the centro-parietal maximum of the P3b IS = V(—2.3232 + (—1.3332 + (1.267)2 = 2.963
and the frontal maximum of the P3a. Differentiating these com-
ponents depends on establishing that there are reliable distribu- IS,| = V(—1.4637 + (0.517)2 + (5.7172 = 5.924.

tional differences, for example, by conducting a repeated-measures

ANOVA with Conditions and Electrodes as factors. If the Condi- Using these vector lengths to scale the corresponding distributions gives
tion X Electrode interaction effect is significant, it may be inferred

that the difference between the conditions varies by electrode g - = — ( 23232.963,—1.3332.963, 1.2672.963

location, that is, the potentials are distributed over the scalp dif-

ferently in the different conditions. The specific electrode locations = (—0.784,—0.450, 0.428

responsible for this interaction can be identified by post hoc pair-

wise comparisons between the conditions at each electrode using a Swvector Scatod= (—1.463/5.924, 0.5175.924, 5.7175.924)

procedure that appropriately controls the Type | error rate, for

example, with the Bonferrorti procedure or Tukey1953 test. — (~0.247, 0.087, 0.965

These standard analytic procedures suffice to secure the conclusion

that scalp distributions between experimental conditions differ anG"he difference between the two scaled distributions is approximately the
to identify the electrode locations where the difference is reliable same at each of the three electrodaisout 0.54, which means there is a
The validity of these inferences then, does not depend in any wagnain effect of Condition for the vector-scaled distributions. This example
on normalizing or scaling the amplitude of the distributions of theS illustrated in Figure 7, third row from the tdpounding error is respon-
potentials in the two conditions. Indeed, if the actual distribution ofi']l;'genfim dtgse Cﬂﬁﬂgﬁgg‘;ﬁs\g ;23 ttﬁg c\i/;iljglsn;lepi)éiigwt;es\évse;EiIti?yeo?caled
the effect is of interest, the distributions should not be scaledmain effects after normalizing amplitudes is also suggested by the vector-
because doing so can attenuate or even shift the spatial locus of tkealed 36 electrode distributions illustrated in Figure 6.



796 T.P. Urbach and M. Kutas

Vector scaling is one such transformation, and the actual transween the conditions is larger at some electrodes than others and
formation is calculated by dividing each potential in the distri- reverses polarity. In this example, the distributions differ at each
bution by the overall vector length given by the square root ofelectrode by a factor of 2, so the vector representations have
the sum of the squares of the potentials. After dividing thedifferent lengths but the same orientation, that is, these two dis-
potentials in the distribution by the vector length, the vectortributions of scalp potentials have the same topographic shape and
representation of the scaled distribution has unit length, so angiffer only in overall amplitude. The plots of the two distributions
distributions scaled in this way have the same overall amplitudeafter vector scaling show that the scaled distributions are identical
Furthermore, because all the potentials are divided by the sama&nd the crossover evident in the unscaled potentials has been
factor, their relative proportions, hence vector orientation andeliminated entirely. An ANOVA conducted on these scaled distri-
topographic shape, are preservddgure 2 and Figure )3 butions should be statistically unlikely to find a significant Con-
Vector scaling thus eliminates overall amplitude differencesdition X Electrode interaction effect, and, in the absence of such a
between distributions while preserving the topographic shapedinding, the inference to different spatial configurations of current
and, in doing so, is widely thought to solve the problem of infer- sources is invalid. So in this case, vector scaling has succeeded in
ring different spatial configurations of generatéMcCarthy and  preventing the misattribution of the distributional difference in the
Wood, 1985; Picton et al., 2000; Ruchkin et al., 199he sup-  unscaled potentials to different spatial configurations of generators.
position is that if the amplitudes of the measured potentials in two  In contrast, an example in which vector scaling would support
experimental conditions are vector scaled and ANOVA on thesan inference to different spatial configurations is illustrated in
scaled distributions still yields a significant ConditisrElectrode  Figure 1B. Here, the distributions of the potentials at the sensors
interaction, this interaction effect must be due to differences inagain show a crossover effect, but unlike the previous example, the
topographic shape, and, as reviewed above, in the theoretical ideglptentials at each electrode do not differ by the same scalar
such differences in shape entail different spatial configurations omultiple, so their topographic shapes differ. Scaling by vector
generators. length clearly does not eliminate distributional differences, and an
These inferences are illustrated in the two columns on the righANOVA conducted on the scaled magnitudes is likely to find a
of Figure 1. In an example where sources in the two conditionssignificant Conditionx Electrode interaction. Because the scaled
have the same location and orientation and differ only in strengtfdistributions differ in shape even after overall amplitude differ-
(Figure 1A), the distribution of the potentials at the seven electrodeences are removed, the inference to different spatial configurations
locations shows a crossover interaction effect: The difference besf generators is warranted. Finally, the third crossover effect illus-

A) Time-domain average ERPs at B) Distribution of measured D) Distribution of vector scaled
three scalp electrode sites potential at 600 ms magnitudes at 600 ms
100V [ 1.0
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C) Vector representation of E) Vector representation of
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Figure 2. Vector representations of potential distributions that have the same topographic shape. A: Representative ERP waveforms.
B: Distributions of unscaled peak amplitude measurements made at 600 ms poststimulus in Condition 1 and Condition 2. C: Vector
representation of the potential distributions in B. Note the identical vector orientations. D: Distributions of the magnitudes in
Condition 1 and Condition 2 after amplitude is normalized by vector scaling. E: Vector representation of the normalized magnitudes.
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A) Time-domain average ERPs at B) Distribution of measured D) Distribution of vector scaled
three scalp electrode sites potentials at 600ms magnitudes at 600ms
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Figure 3. Vector representations of potential distributions that have different topographic shapes. A: Representative ERP waveforms.
B: Distributions of unscaled peak amplitude measurements made at 600 ms poststimulus in Condition 1 and Condition 2. C: Vector
representation of the distributions in B. Note the different vector orientations. D: Distributions of the magnitudes in Condition 1 and
Condition 2 after amplitude is normalized by vector scaling. E: Vector representation of the normalized magnitudes.

trated in Figure 1C behaves in the same way as the examplé. generators differ in location OR
immediately above. Here again the amplitudes at each electrode do

not differ by the same scalar factor and the distributional differ-2. generators differ in polarity OR
ences that remain after vector scaling are likely to lead to signif- S .
icant Conditionx Electrode interactiog effects, ¥hereby Iicensgi,ng 3b. generators differ in refative strength.

the inference that the spatial configurations of generators differs.

These examples show that in the theoretical ideal, amplitud&Vven in the theoretical ideal, nothing stronger than this disjunction
normalization can establish differences in the spatial configuramay be validly inferred from differences in the topographic shape
tions of generators. It should be noted, however, that this is tru@f surface potentials and it is important to note, in particular, that
only if “spatial configuration” is defined in such a way that nothing distributions where generators have the same locations and polar-
about the differences in the location or number of generatordty but different relative strengths count as different spatial con-
follows from differences in their spatial configuration. Prior to figurations. Thus, showing that spatial configurations of generators
amplitude normalization, differences in the distribution of surfacediffer is notthe same as showing that the location or number of the

potentials show that one or more of the three disjuncts is true; 9enerators differ. The point that differences in relative source
strengths count as differences in spatial configurations has been

made befordAlain, Achim, & Woods, 1999; Picton et al., 2000
but the fact that this undermines the possibility of inferring differ-
2. generators differ in polarity OR ences in generator location from differences in spatial configura-
tion deserves wider attention.

1. generators differ in location OR

3a. generators differ in overall strength or

3b. generators differ in relative strengdmd not both 3a and 3b Critique of Vector Scaling
After amplitude normalization by vector scaling, differences be-Vector scaling is intended to license inferences to the conclusion
tween distributions of scaled magnitudes are differences in topothat the spatial configuration of neural current sources differs
graphic shape. Such differences show that the spatial configuratiorisetween experimental conditions. At this point, one might be
of generators differ, that is, that one or more of the following is tempted to conclude that although the distributional differences
true: that remain after amplitude normalization do not provide a great
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deal more inferential traction than distributional differences in theinterval. This baselining procedure is well motivated, because, in
unscaled surface potentials, they do rule out one possible expldhe absence of such an adjustment, a difference between the pre-
nation, that is, differences in overall strength for generators withstimulus potentials would invalidate inferences that attribute post-
fixed locations and polarities. Thus, there would seem to be nstimulus effects to differences in stimulus-related processing.
harm in vector scaling as long as one does not read more into thidowever, an additional assumption, perhaps implicit, is timdy a
conclusion that spatial configurations differ than is warranted bydifference between the baseline potential distributions invalidates
the facts. However, the discussion so far has considered the infesuch an inference, that is, that in the absence of a difference
ential issues only in the theoretical ideal. It is argued next thabetween conditions, the numerical magnitudes of the baseline are
measured ERP scalp distributions unavoidably depart from thigrrelevant for the attribution of poststimulus effects to stimulus
ideal in ways that make amplitude normalization unsound even foprocessing. This second assumption is unproblematic for the mea-
its limited application in ruling out differences in overall generator surement and analysis of unscaled potentials but fatal for vector
strength. That is, in ERP practice, normalizing the amplitudes ofscaling.
measured distributions in two experimental conditions is liable to For ANOVAs conducted on the unscaled distributidrsatios
leave residual differences in topographic shape thatnatehe for the ConditionX Electrode interaction effect are invariant under
result of between-condition differences in the spatial configura-changes in the distribution of the baseline potentials as long as
tions of generators, even when spatial configuration is understoothere is no between-conditions baseline difference. For example, in
in the circumscribed sense defined above. this type of analysis, it is immaterial whether a measurea\Vs

The measured distributions of scalp potentials in experimentaéffect is a difference between 8 ang¥® or between 3 and-2 V.
ERP research depart from ideal distributions of surface potential¥he situation, however, is quite different for vector scaling. Base-
generated by current sources and sinks in two fundamental way$ine distributions with different numerical magnitudes result in
First, distributions of scalp potentials recorded during the postimeasured distributions with different amplitudes. Because vector
stimulus interval of interest are measured by subtracting somscaling is an amplitude scaling procedure and measured amplitude
baseline potential distribution. Even in well-designed experimentsgepends on the baseline potentials, it is not surprising that both the
where these baselines do not differ between conditions, nothingppographic shape given by the vector representation and the
ensures that they are numerically zero at all electrodes. Wheratios obtained by conducting ConditiohElectrode ANOVAS on
subtracted from the poststimulus distributions of interest, thesaector-scaled potentials vary as a function of the numerical mag-
nonzero baseline potentials can result in differences in the topoaitudes of the baseline potential distribution even when the base-
graphic shape of theneasuredlistributions even when the post- line distributions in the two conditions are identical. In this respect,
stimulus generators themselves do not differ in spatial configuratiorthe analysis of potentials measured against a baseline distribution
Because topographic shape alone cannot distinguish genuine difehaves in fundamentally different ways for unscaled and vector-
ferences in the spatial configuration of poststimulus sources versuscaled distributions.
the contribution of the baseline potential, the amplitude normal- The consequences of nonzero baseline potentials can be illus-
ization procedure does not allow valid inference to different spatiatrated by extending the previous examples. Consider again a case
configurations of poststimulus generators. Indeed, nonzero basé which poststimulus generators in two conditions differ only in
line potentials will pose a problem for identifying generator con- overall strength(Figure 4A. These generator distributions are
figurations for any procedure that operates on the algebraic differenamultiplicatively related so the scalp potential distributions have the
of poststimulus and baseline distributions. A second issue fosame topographic shape and vector scaling eliminates distribu-
amplitude normalization is noise, for although time-domain aver-tional differences. Now suppose that identigagnzerg generators
aging across trials improves the signal-to-noise ratio, ERP meaare active during the baseline interval in both conditidR&y-
surements are never noise free. Setting aside technical artifactsre 4B. When the baseline distributiofBigure 4B are subtracted
electrical interference, and noncortical potentials, which might afrom the poststimulus scalp distributioisigure 44, the mea-
least be mitigated, variability resulting from differences betweensured distributions of potentials that resgRigure 4C= Fig-
individual subjects is unavoidable. Noise is a problem for vectorure 4A— Figure 4B are no longer multiplicatively related. Thus,
scaling because it contributes to the amplitude of a distribution an@ven though the baseline distributions are identical in both condi-
tends to increase vector length. Noise-induced overcorrection cations and poststimulus sources differ only in overall strength, the
result in residual differences in topographic shape after scalingmeasureddistributions donot have the same topographic shape.
even when the spatial configurations of the generators are identicdlhe inferential problem arises because the surface distributions
and the levels of noise are the same. Nonzero baseline potentiatseasured against the same nonzero baseline are indistinguishable
and noise variability are facts of life in ERP research and thefrom surface distributions associated with generators that differ
following section details how they render the inference from dif- only in relative strength, that is, Figure 1C and Figure 4C are
ferences in vector-scaled distributions to differences in sourcédentical. Baseline sources and poststimulus sources have the same

configurations invalid. effect on the topographic shape of the measured distributions; thus,
amplitude normalization treats baseline generators that are the

Consequences of Nonzero Baseline Potentials for same in both conditions just like poststimulus generators with

Vector-Scaled Distributions fixed strength, location, and polarity. When the actual poststimulus

In ERP paradigms, experimental effects found in recorded postgenerators differ only in overall strength, the measured distribution
stimulus potentials cannot be unequivocally attributed to differ-appears to have some generators that change in overall strength
ences in stimulus processing because differences present before ttiee poststimulus generatorand some that do ndthe baseline
stimuli could persist into the interval of experimental interest. Thegenerators This combination looks like a difference in relative
standard procedure to address this possible confound is to measwgenerator strength, hence a difference in the spatial configuration
the recorded poststimulus potentials by subtracting a baseline p@f generators. This example clearly demonstrates that distributions
tential distribution, typically recorded during a brief prestimulus of potentials in two conditions derived by subtracting the same
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A) Post-stimulus generator distributions Unscaled potential Vector scaled Inference to source
differing in overall strength distributions distributions configurations
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Figure 4. Nonzero baseline potentials can change the topographic shape of measured potential distributions. A: Poststimulus potentials
associated with generator distributions that have the same spatial configuration and differ only in overall strength. B: Identical nonzero
baseline potentials in both conditions. C: The measured potential distrib@ionB) do not have the same topographic shape, even
though the poststimulus and baseline distributions, considered individually, do. The algebraic difference of these poststimulus and
baseline potentials is indistinguishable from the potentials produced by generator distributions with different relative strengths
(Figure 1Q. Thus, measured potential distributions may have different topographic shapes even when there is no between-condition
difference in the spatial configuration of the poststimulus or baseline generator distributions.

nonzero baseline potentials may have different topographic shapemnzerob;, because adding eadi to the magnitudes projected
even in the absence of any between-condition difference in thalong thejth axis moves the head of the vector, and, unlike
spatial configuration of the generators. So, unless baseline potemaultiplying by a scalar, nothing ensures that vector orientation is
tial distributions are numerically zer@vhich we, of course, may preserved. So except in a few special cases, whenever two vectors
never know, the inference from differences in vector scafeda- V'’ andV have the same orientation, that &, = Vm, the vector
sureddistributions to different spatial configurations pbststim-  sums(V' + B) and(V + B) have different orientations.
ulus sources is invalid. In application to the analysis of scalp potentials, this means that
It is important to realize that the problem posed by nonzeroif the poststimulus distributions represented\byandV have the
baseline potentials is not an idiosyncratic feature of this particulasame topographic shape in the sense of vector orientation, the
example, but follows from the mathematical properties of vectordistributions measured against the nonzero baseline represented by
representations. Vector scaling trades on the insight that for aB, that is,V’ — B andV — B, do not. The consequence of this
a-dimensional vectoV = (vy,...,v5), scalar multiples ol will unspectacular algebraic fact for ERP research is that when post-
have the same orientation, that is, whenéver Vm, for scalam, stimulus distributions generated by sources differing only in strength
the orientations o¥/ andV' are the same. Geometrically, the tail are measured by subtracting nonzero baseline distributions, the
of the vector is anchored at the origin of the axes and multiplyingvector-scaled measured distributions do not have the same topo-
the projection along each axis by changes the projections in graphic shape, and normalizing these measured distributions by
proportion to one another, stretching the length of the vectowector length does not eliminate distributional differences. Non-
without changing its orientation. However, the orientation of multi- zero baseline potentials thus pose a fundamental problem for the
plicatively related vector¥ andV' is not generally invariant under inference from vector-scaled distributions of measured potentials
the addition or subtraction of a vectBr= (b, ...,bj...,b,) with to different configurations of poststimulus sources and, in general,
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normalizing the amplitude of measured distributions tells us nothstandard deviation of 2.V for 16 subjects and 36 electrode

ing about the spatial configuration of poststimulus generators. locations(Figure 5 and the simulation was run 1,000 times. The
To explore what this argument in principle might mean in distributions were then normalized by the within- and across-

experimental practice, simulated distributions of scalp potentialsubjects vector scaling procedures defined in the Appendix.

were constructed for two experimental conditions where sources The contour and line plots give the overall average of the 1,000

differ in strength but not configuration. These two distributions grand means across the 16 subjects. The histograms give the

were embedded in zero mean normally distributed noise with aistribution of the 1,000~ ratios for the Conditionx Electrode

Two poststimulus distributions with the same topographic shape
measured against a 0 uV baseline potential
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Figure 5. Simulated poststimulus distributions of scalp potentials with the same topographic shape in two conditions measured against
an ideal baseline potential distribution of)/ at all electrodes. Contour and line plots of the distributions are averages of the grand
averages across the 16 subjects for 1,000 runs for the unscaled potentials and scaled mégnitudesndition(2) X Electrode(36)

repeated measures ANOVAs were conducted for each of the 1,000 runs. Histograms show the distribution of the &dtiditioode
interaction effecF ratios for the unscaled and both vector scaled distributions. The solid vertical bar at 1.46 in the histograms indicates
critical F(35,525 at p = .05 for the nominal degrees of freedom.
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interaction effects obtained for the Conditi(®) < Electrode(36) when the baseline distributions are identical in both conditions,
repeated measures ANOVAs. For all significance tests in thisand(2) that nonzero baselines can inflate error rates when testing
paper, criticalF atp = .05 was calculated on degrees of freedom for different poststimulus source configurations.
adjusted for violations of sphericity according to Huynh and Feldt  Vector scaling procedures fail to take into account the fact that
(1976. The contour plots for the unscaled potentials show that thighe topographic shapes of distributions of potentials in two con-
simulated negativity is a fairly large effect, with a slightly right ditions may differ merely because some nonzero baseline distri-
lateralized parietal maximum of abouidV (Figure 5A. The plots  bution was subtracted from the distributions of experimental interest.
for the vector-scaled distributions show that scaling within sub-This means that the standard and unavoidable practice of subtract-
jects greatly reduces the effe@tigure 5B, and scaling across ing baseline potentials can lead to differences in the topographic
subjects virtually eliminates itFigure 5Q. The distribution ofF shape after vector scaling even when there is no between-condition
ratios confirms what would be expected for a large effect indifference whatsoever in the spatial configuration of the generators
moderate noise with 16 subjects. The vast majority of the testeither in the baseline or in the interval of experimental interest.
(0.962 on the unscaled potentials exceeded crititand because Although the baseline-to-mean amplitude measure has been used
both types of vector scaling reduce or eliminate the distributionalo illustrate the problem, the arguments applies equally to any
differences between the two conditions, far fewer of the effectsmeasure derived from the algebraic combination of two scalp
were significan{0.174 for within-subject vector scaling and 0.059 distributions, including baseline-to-peak and peak-to-peak mea-
for across-subject vector scalindgrhe proportions of significant sures. The important consequence for the interpretation of ERP
tests for the scaled distribution are restricted to those cases whedata is that even when between-condition differences in topo-
a significant ConditionxX Electrode interaction effect was found graphic shape remain after amplitude normalization by vector
for the unscaled distributions. This example shows that both prolength or root mean squafem.s) amplitude, it does not neces-
cedures, and vector scaling across subjects in particular, can dosarily follow that the spatial configuration of the neural generators
good job of eliminating distributional differences under the ideal- differs between the experimental conditions.
ization that the baseline potential distribution is numerically zero  Two general comments are in order. First, subtracting nonzero
at all electrodes. baseline potentials poses an interpretive problem for unscaled

To illustrate the consequences of nonzero baseline potentials, @otentials as well, because here, too, the resulting distribution
second set of simulations was conducted using the same parameflects the combination of pre- and poststimulus generator activ-
eters as above, except that the poststimulus distribution was med#y. However, as long as there is no between-condition difference
sured by subtracting a baseline potential distribution that was @ the baseline potential distributionB, ratios for Conditionx
constant-2.5 uV at all electrodes in both conditions. There is no Electrode interaction effects for unscaled distributions are invari-
difference between the distribution of the baseline potentials themant under measurement against different baselines. Subtracting
selves, and measuring the poststimulus distribution against thisonzero baseline potentials will, naturally, change the distribution
baseline simply shifts the effect by 2/&V. The plots for the  of the unscaled potentials. However, unlike the unscaled distribu-
unscaled distributions again suggest a right parietal source thdions, for vector-scaled distributions, the experimental effect, that
differs only in strength between the conditioffSgure 6. is, the difference between the conditions after scaldwgsvary

The magnitude of the experimental effect prior to vector scalingwith the numerical magnitudes of baseline distribution itself. In
in this set of simulations is the same as in the first(§égure 54, this respect, the comparison of vector-scaled distributions is sen-
and, as expected, the proportion of significdhttests for the  sitive to the specific numerical magnitudes of the baseline poten-
ConditionX Electrode interaction effect is nearly identi¢@l963. tials in a way that comparison of unscaled distributions is not. This
From the algebraic argument above, the distributions measured lyyoint is illustrated for a variety of nonzero baseline potentials in
subtracting the same nonzero baseline should have different topé-igure 7.
graphic shapes even though the poststimulus sources differ only in  Second, the specific failure of amplitude normalization illus-
strength. The plots in Figure 6B and Figure 6C bear this out andrated by subtracting baseline potentials is a symptom of a deeper
show that, on average, neither vector scaling within nor acrossinderlying problem that can be traced back to the mapping prin-
subjects eliminates the differences in topographic shape. Theiple that was used to justify the procedure in the first place
between-condition effect that remains for the vector-scaled distri{repeated here for convenience
butions is of sufficient magnitude to result in ConditisnElec-
trode interaction effects above critidafar more often than the 5% If two generator distribution§; andG, have the same spatial config-
expected by chance. For vector scaling within subjects, the prouration, then the corresponding distributions of surface potentials have the
portion of significantF tests was 0.879, and for vector scaling same topographic shape.
across subjects, the proportion was 0.486. Thus, where the null
hypothesis is that the poststimulus source configurations do nothis principle is true in theory, but the surface potentials re-
differ, hypothesis testing with ANOVAs conducted on scaled dis-ferred to are never measured in experimental practice. In ERP
tributions measured by subtracting nonzero baseline potentials caesearch, it is well understood that talk about “the potential at
lead to seriously inflated Type | error rates. In experimental pracan electrode” is a convenient fiction and shorthand for “the
tice, a baseline potential distribution would be expected to varydifference between the potential at an electrode and some refer-
from electrode to electrode and there would be noise variability inence potential, subsequently measured against a suitable base-
the baseline as well, but the flat noise-free baseline serves tbine.” Thus, the quantities typically being compared in ERP
illustrate the general point. research are two distributions of potentials measured relative to

Thus, these simulations show that when the prestimulus basesome reference and baseline potentials and theseairenea-
line is subtracted from the analyzed waveforrtig, Condition X surements of surface potentials in the sense required for the
Electrode interactions for vector-scaled distributions can be sensmapping principle to be true. Instead, when amplitude normal-
tive to the numerical magnitude of the baseline potentials everzation is used to infer differences in the spatial configuration of
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Two poststimulus distributions with the same topographic shape
measured by subtracting a -2.5 uV baseline potential
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Figure 6. Simulated poststimulus distributions of scalp potentials with the same topographic shape in two coriditopare
Figure 5 measured against a noise-free flat baseline potentialob .V at all electrodes. All other simulation parameters are identical
to the simulations in Figure 5.

generators, an entirely different and incorrect “experimental meashape of measured potentials to between-condition differences in
sure” mapping principle is tacitly presupposed: the spatial configuration of neural generators is not valid.
Vector scaling is intended to address a serious inferential am-
If two generator distribution§,; and G, have the same spatial config- biguity, that is, that Conditior< Electrode interaction effects on

uration, then the corresponding distributions of surface potentials plus ounscaled potentials can result from differences in the spatial con-
minus the referenced baseline potentials have the same topographic shafiguration of neural generators or simply from differences in gen-

erator strength alone. However, vector scaling and equivalent r.m.s.
The algebraic considerations rehearsed above show why this eamplitude normalization procedures require assumptions about the
perimental mapping principle does not hold in general, and thalistributions being scaled that are not satisfied by experimentally
simulations and Figure 7 give specific cases where it fails. Both theneasured ERP data, and, as a result, these procedures are liable to
general argument and the counterexamples demonstrate that tha equally serious inferential ambiguity of their own. Condition
inference from between-condition differences in the topographicElectrode interaction effects in vector-scaled distributions, that is,
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differences in topographic shape, can result from differences in theetween them. To illustrate the combined effect of noise variability
spatial configuration of generators or simply from anything thatand the contribution of nonzero baseline potentials, a series of
displaces the distributions relative to zero, such as subtracting simulations were conducted in which both factors were varied
nonzero baseline potential. Thus, vector scaling replaces one inndependently.
ferential ambiguity with another, and, in the end, goes no further
toward securing the conclusion that spatial configurations of neuError Rates as a Function of Scaling Procedure,
ral generators differ between experimental conditions. Baseline, and Noise

In addition to demonstrating the confounding effect of baselineThe distributions of unscaled potentials were the same as in the first
potentials for vector scaling, these simulations also show thatwo sets of simulations and consistent with a right parietal source
vector scaling within and across subjects may give different rediffering only in strength by a factor of tw@s in Figure 5A. The
sults. Further consideration indicates that noise variability presentsvo distributions were embedded in zero mean normally distrib-
a general problem for vector scaling that is independent of theuted noise for 16 subjects and spatially sampled at 36 electrodes.

baseline issue. The standard deviation of the noise was varied from 1 ta¥0n
steps of 1uV and the baseline potentighoise free and constant
Consequences of Noise on Vector Scaling Procedures across electrodgsanged from—>5 to 5uV in steps of 1uV. The

In the absence of noise, vector scaling within and across subjecmulations were run 200 times for each combination of noise and
gives identical results; when there is noise variability, the twobaseline. For each run, ConditiohElectrode ANOVAs were con-
procedures may differ, and, in some cases where the spatial coducted as specified above. The proportion of the 200 tests of the
figuration of sources is in fact the same, neither procedure reliablyConditionx Electrode interaction effect that exceeded critieait
eliminates differences in topographic shape. The consequences eéch level of noise and baseline are summarized in Figure 10.
variability for vector scaling have already received some attention. For the unscaled distributiori&igure 10A, the different base-
Haig et al. (1997 argue that if the covariance matrices of the line potentials have no effect on the proportion of signific&nt
scaled potentials satisfy the assumption of homogeneity, then, désts. At very low levels of noise, 100% of the tests exceeded
mathematical necessity, this assumption is violated for the scaledritical F, and at very high noise levels, the proportion is close to
potentials(see Ruchkin et al., 1999, for a replirhe concern here the 5% expected by chance. Between these noise extrema, the
is different. With unscaled potentials, the expected values of theroportion of significant tests falls off as noise increases, and,
distribution do not change as the variability of zero mean noiseoverall, the effect is likely to be detected as long as the standard
increases, because positive and negative noise components, eveddviation of the noise is below abouyd/, and not very likely to
large, are equiprobable and tend to cancel out over the long rurbe detected when the standard deviation of the noise is abaVe 5
However, vector length is a function of squared amplitude, and aghese unsurprising results are included to establish that the basic
noise variability increases, instead of canceling out, positive andlistributional effect is of an experimentally plausible magnitude—
negative noise components tend to increase vector length. Thus, asither so small as to be lost in typical levels of noise nor so large
noise variability increases, so does vector length and this results ias to be detectable at atypically high levels of noise. For vector
overcorrecting the amplitude. The consequences of this overcoscaling within subject{Figure 10B and vector scaling across
rection are illustrated for simulated potential distributions at seversubjects(Figure 10Q, Type | error rates can be as high as 100%.
midline electrodes in two experimental conditioff&gure 8. It has been argued that vector scaling across subjects is more

The salient feature is a 2V effect at the parietal electrode Pz, conservative than vector scaling within subjects because the for-
with smaller differences elsewhere including a @¥8-crossover at  mer preserves between-subject variabililBuchkin et al., 1999
the frontal electrode F@=igure 8A, lef). This sort of Conditionx and, with a few exceptions at low levels of noise, this appears to
Electrode interaction can be produced by neural current sourcese the case in the present example. Nevertheless, it is also clear
differing in strength by a factor of three and is a canonical case irthat being relatively more conservative than within-subject vector
which normalizing the overall amplitude by vector scaling shouldscaling does not make across-subject vector scaling a conservative
eliminate the Conditiorx Electrode interaction. In the absence of test across the board. In addition to the inflated Type | error rates,
noise, both vector scaling methods eliminate the Condition this example also shows that vector scaling across subjects can be
Electrode difference between the conditioffggure 8A, center sensitive to small changes in both baseline potentials and noise: As
and righy but neither method does when these same distributionshe baseline potential ranges betwee2 and 2 uV and the
are embedded in a moderate level of noise. On average, over 1,08@andard deviation of the noise ranges between 1 aa¥, Zrror
simulations with 16 subjects and zero mean noise with standardates vary from below 5% to over 80%. These simulations are
deviation = 2 wV, the unscaled distributions approximate the greatly oversimplified in several respects, and do not attempt to
noise-free distributiongFigure 8B, lefi. However, for these sim- determine the error rates for the two vector scaling procedures that
ulation parameters, the results of the two vector scaling proceduresight be expected in practice. Nevertheless, having shown that
differ from one another and neither converges on values thahonzero baseline potentials and noise variability are problems in
eliminate the Conditiorx Electrode interactiofFigure 8B, center  principle for the intended application of vector scaling in ERP
and righ}. Scaling fails to eliminate distributional differences in research, the simulations indicate these two factors can substan-
this case, because the amplitude over correction at moderate noitally and systematically inflate Type | errors in the analysis of
levels has a greater impact on the distribution with the smallesimulated data that are not altogether unlike a typical ERP effect.
overall amplitude(compare Condition 1 and Condition 2 in
Figure 9. Conclusion

The extent to which these residual noise-related differences
inflate Type | error rates depends on several factors including thét is uncontroversial that reliable between-condition topographic
choice of scaling procedure, the variance of the noise, the specifiadifferentiation in the distribution of scalp potentials show that
of the two distributions, and the overall amplitude difference corresponding neural generators differ in some respect or other. It
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Figure 8. Noise variability causes amplitude over correction in vector scaling. A: Distributions of unscaled potentials and vector-scaled
magnitudedqs.m) with the same topographic shape at seven midline electrodes are properly scaled in the absence of noise. B: The
overall mean across 1,000 simulations where the unscaled distributions were embedded in zero mean normally distributed noise with
standard deviatiors 2 wV for 16 subjects. Error bars indicate mean standard error over the 1,000 simulations. Vector scaling tends
to overcorrect the amplitude of Condition 1 and does not eliminate distributional differences.

is also widely believed that amplitude normalization, for example,The only motivation for normalizing the amplitude of distributions
by vector scaling, can sharpen this conclusion by showing thaof scalp potentials is to draw inferences about distributions of
spatial configurations of generators differ. This paper has reviewedenerators, and normalization is entirely irrelevant to the issue of
why, under a suitable definition of “spatial configuration,” this whether there are differences between distributions of scalp po-
proposition is indeed true for ideal distributions of generators andentials. Even if the procedure were otherwise sound, it was never
surface potentials. However, it was also argued that under thigatended to be nor should it be treated as a post hoc test to ensure
definition, establishing different spatial configurations is of limited the reliability of distributional differences in surface potentials.
interest in principle and it was shown, in addition, that the prop-Amplitude normalization aims to improve upon the general con-
osition fails in application to ERP data. Three main points emergedclusion that distributions of neural generators are somehow differ-
First, the distinction between distributions of scalp potentialsent by replacing it with a more specific conclusion about the way
and distributions of neural generators must be clearly maintainedhe generators differ. For some research purposes, it is important to

Figure 7. Scalp distributions and between-condition experimental effects before and after vector scaling. The two leftmost columns
illustrate scalp distributions for recorded baseline amplityégsB,) and recorded poststimulus amplitud®s, P,) at three electrodes

(Frontal, Central, Parieta) in microvolts. The same two recorded poststimulus distributions are used in all examples; the baseline
potential distributions vary from example to example, but in each compaBsenB,, that is, there are no between-condition baseline
differences. The three middle columns illustrate, in order, the distribution of the unscaled measured anipifudés — By, M, =

P, — By), the vector representation of these measured distributions, and the distributions after vector(¥&liM$) in scaled
magnitudes(s.m). The three rightmost columns illustrate the distribution of the between-condition experimental effects for the
poststimulus potentialéP, — P;), the unscaled measured potentidis, — M;), and the vector scaled magnitud&ss — VS). In

each plot, circles are unscaled potenti@smicrovolts, diamonds represent s.m. A: Ideal baseline potential distributionsudf &t

all electrodes. B: Nonzero baseline potentials with the same value at each electrode. C: Nonzero baseline potentials that vary by
electrode location. For the unscaled potentials, the between-condition @ffeet M;) does not change when different baselines are
subtracted from the poststimulus potentials. For the vector-scaled distributions, the between-condition effect for the scaled magnitudes
(VS — VS) varies widely when the different baselines are subtracted from the poststimulus distributions, and, depending on the
distribution of the baseline potentials, these effects may increase monotonically-ftorR, decrease monotonically, cross over, or
appear as a main effect.
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Figure 9. Vector length increases with noise variability. Plots give the mean across 1,000 simulations in each of two conditions for
the distributions of unscaled potentials from Figure 8 over a range of noise levels. The unscaled potentials for 16 subjects at seven
electrodes were embedded in noise with standard deviations ranging fro/m(foise fre¢ to 5 uV. The distributions of the scaled
magnitudegs.m) show that at moderate levels of noise, scaling by vector length fails to eliminate distributional differences even when
ideal (noise-free topographic shapes are identical.
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draw such inferences; for other purposes it is not, and blankethat is, differ in spatial configuration. That is, of all the possible
insistence on amplitude normalization runs roughshod over thisombinations of differences in generator locations, polarities, and
distinction. strengths that could lead to different scalp distributions, amplitude
Second, even for ideal distributions of generators and surfacaormalization at best only rules out the one special case where the
potentials, the extent to which amplitude normalization refinesgenerators in the two conditions all have the same locations, have
conclusions about generator distributions is rather limited. Prior tdhe same polarities, and differ in strength by the same multiplica-
amplitude normalization, differences in scalp distributions showtive factor. If, after this case is ruled out, the remaining possibilities
that neural generators differ in some combination of location,are lumped together as differences in the spatial configurations of
polarity, and relative strength or overall strength. After amplitudethe neural generators, then amplitude normalization can in theory
normalization, residual differences show that neural generatorestablish that the spatial configurations of neural generators dif-
differ in some combination of location, polarity, or relative strength, fers. However, for this to be true, different spatial configurations
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Proportion of significant Condition x Electrode interaction effects varies
with baseline potential and noise variability (16 subjects)

A) Unscaled B Vector scaled C) Vectorscaled
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Figure 10. For testing the hypothesis that source configurations do not differ, the Type | error rates based on significant Condition
Electrode interaction effects vary as a function of vector scaling procedure, noise, and baseline potential. Two simulated poststimulus
distributions with the same topographic shégbe unscaled potentials from Figurevéere embedded in zero mean normally distributed

noise for 16 subjects. The standard deviation of the noise ranged from 1% IDsteps of 1uV. The distributions were measured

against noise-free constant baseline potentials ranging fférto +5 wV in steps of 1uV. Two hundred simulations were conducted

at each combination of noise level and baseline. Repeated medsueati®s were computed for Conditiof2) X Electrode(36)
interaction effects for the unscaled potentials and for both types of vector-scaled mag(stuales/herep < .05 for the unscaled

effect. The light gray cutting plane at .05 indicates ideal performance for the vector scaling procedures. A: Signiéisemare likely

for unscaled potentials at all baselines if the standard deviation of the noise is below aboW:3Type | error rates for vector scaling

vary with both noise and baseline and range up to 1.0. C: Type | error rates for vector scaling across subjects tend to be lower than
for vector scaling within subjects, but vary with noise and baseline ranging up to 1.0.

must be defined so broadly that nothing follows about differencesilations demonstrated how both nonzero baseline potentials and
in the location or number of generators from differences in spatiahoise can lead to inflated Type | error rates when amplitude
configuration. On this definition of spatial configuration, for ex- normalization is used to reject the null hypothesis of no difference
ample, the same number of generators occurring in exactly theetween spatial configurations of generators. Thus, in principle,
same locations may be different in spatial configurations, providecamplitude normalization is limited to ruling out the special case of
their relative strengths differ. Thus, although amplitude normaliza-an overall difference in generator strength as an explanation of
tion can, in principle, establish that spatial configurations differ, distributional differences in scalp potentials: in ERP practice, it
this in fact does little to narrow down the range of possiblecannot do even this reliably.
explanations for the distributional differences in surface potentials. Consideration of the consequences of the baseline potentials
Third, it was argued that quite apart from these limitationsand noise shows that amplitude normalization is unreliable in its
regarding what amplitude normalization can show in principle,intended application in ERP research and the practice should be
there are fundamental problems in applying amplitude normalizadiscontinued. However, because amplitude scaling is wholly irrel-
tion procedures to measured distributions of scalp potentials irevant to establishing distributional differences in the surface po-
ERP research. Nonzero baseline potential distributions and noigentials themselves, and even in principle provides only limited
are unavoidable and it was shown that both pose problems for thimferential traction in determining the specifics of how distribu-
interpretation of differences between amplitude-normalized distritions of neural generators differ, it is not clear that much is lost by
butions in ways that they do not for unscaled potentials. Specifi-abandoning the procedure. Indeed, much is gained if experimental
cally, both nonzero baseline distributions and noise can lead toesults that do not constitute good evidence for differences in the
between-condition differences in topographic shape even when thepatial configuration of neural generators are not treated as if they
spatial configurations of generators are identical. A series of simdid.
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APPENDIX

Vector scaling normalizes the overall amplitude of a distribution ofIn this procedurgPicton et al., 2000, p. 147, footngtalifferent
scalp potentials, and in ERP practice, there are different candidateector lengths are obtained for each subject and each condition.
distributions for scaling: single-trial data, within-subject averagesEach of the original subject- and condition-specific distributions
(across single tria)s and grand mean&cross-subject averages (X for Subject and Electrodeg=1, 2, ...a) is scaled by its own
McCarthy and Wood(1985 caution against scaling single-trial vector length, which eliminates overall amplitude differences be-
data because of the effects of noise. The publication guidelines diveen subjects as well as conditions.

Picton et al.(2000 recommend normalizing amplitude based on

across-subject averages and a within-subject procedure is meRector Scaling across Subjects

tioned in a footnote. To vector scale within subjects, the distribu-| et Xj denote the grand mean across subjects at Eleciradle
tion of each subject’'s mean across trials in a given condition iSCondition X, that is,
divided by the vector length of that same distribution. In this

procedure, the scaling terms will generally vary from subject to

n
subject. To vector scale across subjects, the vector length of the > X
grand mean distribution across subjects is computed for a given K. = i-1
condition and then each subject’s condition mean across trials is ! n

divided by this scaling factor. In this across-subjects scaling pro-
cedure, the scaling term for each condition is the same for alkirst, compute the across-subjects vector length|, for Condi-

subjects. tion X as the vector length of the grand mean distribution across
In a typical ERP experiment, EEG data are recorded for Subthe n subjects, that is,

jectsi =1, 2, ...,n at electrodeg = 1, 2, ...,a in different

experimental conditions. For each subject, the single-trial EEG

data recorded at each electrode are typically time locked to a IX | = /i 2

stimulus onset and averaged across trials in each condition. These ; =

time-domain waveforms are then reduced to the dependent mea-
sure of interest, for example, mean potential 300-500 ms postrhe across-subject vector-scaled magnitude in CondiXofor
stimulus relative to the mean potential in a 100-ms prestimulussypjecti and Electrodg is then computed as

baseline at each electrode. Dt denote the measured potential in
Condition X for Subjecti at Electrodg.

Vector Scaling within Subjects IX.|
First, the within-subjects vector lengtl; | for Subjecti in Con-
dition X is computed as In this procedure, a single scaling factpX, |, is used to scale the
distributions for all the subjects in Conditiofs By doing so, the
| a grand mean amplitude is normalized between conditions without
[Xi.| = j 1X.,2 eliminating between-subjects amplitude variability. This formula-

tion of the vector scaling procedure differs slightly from the pro-
cedure for scaling across subjects by r.m.s. amplitude recommended
in Picton et al(2000, p. 147. However, the- ratios computed in
ANOVA are identical under both the r.m.s. amplitude and vector
X; length scaling procedures, so for the intended purpose of normal-
. izing overall amplitudes of scalp distributions, the two procedures
1| are equivalent.

Then, the within-subject vector-scaled magnitude in Condion
for Subjecti at Electrodg is computed as



