
The intractability of scaling scalp distributions
to infer neuroelectric sources

THOMAS P. URBACHa and MARTA KUTAS a,b

aDepartment of Cognitive Science, University of California, San Diego, La Jolla, California, USA
bDepartment of Neurosciences, University of California, San Diego, La Jolla, California, USA

Abstract

ERP researchers use differences in scalp distributions to infer differences in spatial configurations of neuroelectric
generators. Since McCarthy and Wood~1985! demonstrated that a spatially fixed current source varying only in strength
can yield a significant Condition3 Electrode interaction in ANOVA, the recommended approach has been to normalize
ERP amplitudes, for example, by vector length, prior to testing for interactions. The assumptions of this procedure are
examined and it is shown via simulations that this application of vector scaling is both conceptually flawed and unsound
in experimental practice. Because different spatial configurations of neural generators cannot reliably be inferred from
different scalp topographies even after amplitude normalization, it is recommended that the procedure no longer be used
for this purpose.

Descriptors: Event-related potential, ERP, Amplitude normalization, Topography, Scalp distribution, Source
configuration

The ability to detect differences in the spatial distribution of
cortically generated scalp potentials is a cardinal virtue of multi-
channel EEG recordings. In addition, for experiments designed to
engage different brain systems, the reliable identification of dis-
tinct spatial configurations of neural generators may be a central
concern. Differences between distributions of scalp potentials are
typically established by the finding of a statistically significant
interaction between Experimental Condition and Electrode Posi-
tion in a repeated measures analysis of variance~ANOVA !. How-
ever, the inference from a reliable topographic difference in surface
potentials to conclusions about the specific type of differences in
the neural generators is problematic. In an influential paper, Mc-
Carthy and Wood~1985! showed that a Condition3 Electrode
interaction alone is not sufficient grounds for inferring that the
spatial configurations of generators in the two conditions differ,
because such an interaction can result when a dipolar generator in
a fixed spatial location varies only in strength. To protect against
drawing this unwarranted conclusion, McCarthy and Wood pro-
posed a vector scaling procedure that normalizes the overall am-
plitude of the distribution while preserving its topographic shape.
Amplitude normalization procedures have since come into wide
use and are explicitly recommended in published guidelines on

ERP research~Picton et al., 2000! for purposes of identifying
distinct source configurations. This report reviews amplitude nor-
malization and several key concepts related to these inferential
issues and then argues that amplitude normalization is unreliable in
its intended application in ERP research and that use of the pro-
cedure should therefore be discontinued.

Amplitude Normalization and Generator Distributions

Despite some recent debate about amplitude normalization~Haig,
Gordon, & Hook, 1997; Ruchkin, Johnson, & Friedman, 1999!, a
thorough exposition of the procedure’s motivation, justification,
and consequences for EEG research has not appeared in the liter-
ature. A number of procedures are plausible candidates for ampli-
tude normalization, some are equivalent, others are not~see
Appendix!. Furthermore, it is not entirely clear that terms like the
“strength” and “spatial configuration” of neural generators and the
“topography” and “topographic shape” of distributions of poten-
tials are used consistently.

Generators, Strengths, and Spatial Configurations
Idealized distributions of neural generators may be construed as
sets of point current sources and sinks of specified intensity~strength!
and polarity sprinkled throughout a volume conductor. The elec-
trical field associated with these generators propagates as a func-
tion of distance and the geometry and electrical properties of the
media, for example, cerebrospinal fluid, skull, and scalp. Although
the potential associated with each generator varies with distance in
a nonlinear manner, the field at any point, including the surface of
a bounded volume conductor, varies directly with the intensity of
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the source. The field for multiple sinks and sources is the sum of
the fields associated with each generator individually; some simple
examples of distributions of generators in a two-dimensional homo-
genous conductor and their associated fields are illustrated in the
two left columns of Figure 1.

Although the difference between strength and spatial configu-
ration may seem straightforward, some simple examples illustrate
how matters can become murky, particularly when strength is
contrasted with spatial configuration. For instance, it makes a
difference whether terms like “generator” or “source” refer to point
sources, or to dipolar source–sink pairs in particular, or to some
other ensemble of current sources and sinks. In some cases, the
intended usage may be clarified by context, for example, an as-
sertion about the orientation of a generator presupposes an axis of
orientation that a point source does not have. In other cases,

however, the meaning may be less clear and, of course, whether or
not generator locations do, in fact, differ may depend on what is
meant by “generator.” If “generator” refers to a dipole, there is a
sense in which merely rotating the dipole 90 degrees does not
change the location of the generator. However, if the positive and
negative poles are treated as a separate point source and point sink,
rotating the dipole does entail changes in generator locations.
Similar concerns arise in connection with what is meant by the
“strength” of a source. It seems clear enough that multiplying the
intensity of the positive and negative poles of a dipole by a factor
of two is a change in strength alone and not a change in spatial
configuration. However, when the poles are multiplied by a factor
of 21, this change in strength is equivalent to rotating the dipole
180 degrees. If rotation counts as a change in the spatial config-
uration of sources, then so must the equivalent polarity reversal;

Figure 1. Schematic illustration of the ambiguity of Condition3 Electrode interaction effects. The two leftmost columns show
generator distributions in two experimental conditions. Positive potentials generated by current sources~1! are shaded lighter, negative
potentials generated by sinks~2! are shaded darker, and isopotential contour lines mark orders of magnitude. For simplicity, potentials
are assumed to vary with the inverse of the distance from the source. The rows of large open~Condition 1! and filled ~Condition 2!
circles indicate the “electrode” locations. The smaller open and filled circles in the line graphs indicate the values of the field at the
corresponding electrode locations for the Condition 1 and Condition 2 generator distributions. A: Generator distributions where the
locations and polarities are identical and each of the corresponding generators differ in strength between Conditions 1 and 2 by the same
scalar multiple, in this case a factor of 2. B: Generator distributions where the polarities and strengths are identical, but the location
of one of the dipoles is different. C: Generator distributions where the locations and polarities are identical but the generators differ
in relative strength.
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the result is both a difference in source strength and a difference in
spatial configuration. Other examples similarly strain the puta-
tively obvious dichotomy between strength and spatial configura-
tion as well. Consider a strong dipole and a weak dipole some
distance apart in a volume conductor and, without any change in
location, suppose that the strength of the first dipole decrease while
the strength of the second increases. The upshot of these changes
in strength is that the strong and weak dipoles effectively trade
places. Depending on what one means by “spatial configuration,”
it might seem reasonable to treat this as a different spatial config-
uration of generators. However, because neither the locations nor
polarities of any of the four poles have changed whatsoever, this
difference is also a difference in the strength alone. Here again, it
seems that the distinction between differences in strength and
differences in spatial configuration, if there is one, is not entirely
clear and thus not especially informative. The following terms and
definitions provide a framework for articulating exactly what is
happening in these and other cases.

The term “generator” will refer to a point current source at a
location with a polarity and a positive, nonzero intensity1 and be
represented as an ordered triple, that is, a generatorg 5 ^L, p, i &
where the location vectorL gives thê x, y, z& coordinates in space,
polarityp5 11 or21, and intensityi is a real number strictly.0.
Requiring the intensity to be nonzero prevents phantom generators
that do not generate a field. A distribution of generatorsG in a
volume conductor is defined as a set of generators, and two such
distributionsG1 andG2 are identical if and only if every generator
has the same location, polarity, and intensity inG1 as it does inG2.
This regimentation segregates the three ways that distributions of
generators may differ, that is, with respect to the location, polarity,
or intensity of their constituent generators. When the intensity of
the generators inG1 differs from the intensity of the generators in
G2, there are two mutually exclusive cases: either the intensities in
G1 all differ by the same multiplicative factor from the correspond-
ing intensities inG2 or they do not. This differentiation can be
incorporated into an explicit characterization of conditions under
which generator distributionsG1 andG2 differ as follows:

G1 Þ G2 iff

1. The locations of the generators are not all the same OR

2. The polarities of the generators are not all the same OR

3. The intensities of the generators differ
a. in overall strength, that is, differ such that there is a single

factor m . 0, m Þ 1, where, for each generator,iG1
5 miG2

OR ~exclusive!

b. in relative strength, that is, the strengths of the generators in
G1 differ by different factors for different generators such
that there is no single factorm as defined in a.

Differences in overall strength are analogous to having all gener-
ators ganged to a master gain control: Turning the gain up or down

multiplies the strength of each generator in the distribution by the
same factor. Conditions 3a and 3b are mutually exclusive, that is,
any difference in generator intensity is a difference in overall
strength or a difference in relative strength but not both. Condi-
tions 1, 2, and 3 are not mutually exclusive and differences in
location, polarity, and strength can co-occur.

The relation between differences in the strength and differences
in the spatial configuration of generators may be articulated in this
framework. The key relation involves two generator distributions
that differ only in overall strength and this case will be termed
“multiplicatively related,” that is:

Two generator distributionsG1, G2, are multiplicatively related iff

1. The locations of the generators are all the same AND

2. The polarities of the generators are all the same AND

3. The intensities of the generators differ in overall strength, that
is, 3a above is satisfied.

In this special case, the only difference betweenG1 and G2 is a
difference in the overall strength of the generators, that is, the
locations and polarities are all identical and there are no relative
differences in strength. The identity conditions for “spatial config-
urations of generators” may, at last, be given as follows:

Two generator distributionsG1, G2 have the same spatial configuration
of generators iffG1 andG2 are multiplicatively related.

This definition of spatial configuration may be illustrated in ap-
plication to the examples introduced above. Rotating a dipole by
90 degrees counts as a change in spatial configuration. Since
rotation changes the location of the poles, the two distributions are
not multiplicatively related and, thus, the spatial configurations of
the generators differ. For the polarity reversal case, changing the
polarity of the poles is not a difference in strength as defined
above, so the generator distributions are not multiplicatively re-
lated. This case also counts as a difference in spatial configuration.
Finally, the generator distributions where the strong and weak
dipoles trade locations~strengths?! are also different spatial con-
figurations. Even though there is no difference in generator loca-
tion or polarity, the intensity of the first dipole changes by some
factor,1 and the intensity of the second dipole changes by some
factor.1. Because this is a difference in relative strength and not
overall strength, the distributions are not multiplicatively related,
and consequently, the two spatial configurations of generators
differ.

It may not be immediately obvious that being multiplicatively
related and having the same spatial configuration are or should be
treated as equivalent, because it might be argued that a spatial
configuration of generators should be defined by the location of
the generators alone, regardless of generator strength. . Of course,
“spatial configuration of generators” has been defined by stipula-
tion, and other definitions are possible, but the definitions above
have two salient virtues. First, they give a principled way to
characterize exactly what is going on in the troublesome cases
described at the outset. Second and more importantly, these defi-
nitions explicitly characterize the only sense of “different spatial
configurations of generators” in which it is true that distributional
differences that remain after normalizing the amplitude of scalp
potentials entails that the spatial configurations of the correspond-

1It is possible to fold polarity in with intensity by allowing intensity to
range over positive and negative nonzero numbers. In principle, the sub-
stantive points can be developed either way, but treating polarity and
intensity separately will make for a tidy separation of “strength” and
“spatial configuration.”
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ing generators are different. Thus, although other definitions might
be imagined, the definition of “spatial configuration of generators”
articulated herein must be the one assumed in all previous papers
that use vector scaling, if amplitude normalization is to establish
that spatial configurations of generators differs.

Scalp Potential Distributions and Topographic Shape
The potential field at the surface of a bounded volume conductor
may be spatially sampled, for example, by electrodes, at discrete
locations. The values at these locations define a distribution of
potentials that may be represented as a vectorS5 ^v1 . . . vj . . . va&,
j 5 1, 2, . . . ,a, wherevj is the potential at locationj, anda is the
number of electrodes. Assuming the same sensor locations, iden-
tity for two such distributionsS1 andS2 is simply identity of the
potentials at each location; distributions differ if they are not the
same at every location.

The distribution of surface potentials in this sense must be
clearly distinguished from the topographic shape and overall am-
plitude of such distributions. Whereas the distribution is given by
the numerical magnitudes of the potentials at each location, the
topographic shape of a distribution is determined by the relative
magnitudes of the potentials across all locations. For instance, a
distribution of surface potentialsS1 5 ^2, 3, 5& is different from
S2 5 ^4, 6, 10& at all three locations, butS1 andS2 have the same
shape~topography! because their internal proportions are the same,
that is, forS1 andS2, v10v2 5 203 5 406, v10v3 5 205 5 4010, and
v20v3 5 305 5 6010. Topographic shape and overall size behave
like familiar notions of geometric shape and size. If the sides of a
triangle with lengths 2, 3, and 5 are multiplied by a factor of 2, the
overall size of the triangle changes but its shape is the same
because its original proportions are preserved. If the sides are not
all multiplied by the same factor, the original proportions are not
preserved and the geometric shape changes. For topographic shape,
identity of internal proportions may conveniently be expressed in
terms of scalar multiplication of the distributions~vectors!:

The topographic shape of distributions of surface potentialsS1 andS2

is the same iff there is some scalar multiplem such thatS1 5 mS2.

In what follows, “topographic shape” and “topography” are used to
refer exclusively to the shape of a distribution rather than the
distribution itself. In this usage, the distributionsS1 andS2 imme-
diately above differ, but have the same topographic shape, that is,
the same topography.

Generator Distributions and Surface Potential Distributions
For present purposes, there are two key inferential relations be-
tween distributions of generators and distributions of scalp poten-
tials. The first may be expressed as follows:

If two generator distributionsG1 andG2 are the same, the correspond-
ing distributions of surface potentialsS1 andS2 are the same.

Thus, when two distributions of surface potentials differ, it follows
that the corresponding generator distributions differ. The relation
between spatial configurations of generators and topographic shape
is as follows:

If two generator distributionsG1 andG2 have the same spatial config-
uration, the corresponding distributions of surface potentialsS1 andS2 have
the same topographic shape.

This relation follows from the definitions of spatial configuration,
topographic shape and the fact that the potentials at any point vary
directly with source strength. If the location and polarity of the
generators are held constant and the strength differs by the same
factor for all generators, that is,iG1

5 miG2
, the scalp distributions

also differ at each point by this factorm. Thus, if proportional
strengths of the generators are preserved, so are the proportional
amplitudes at the scalp, that is, the scalp distributions have the
same topographic shape. The form of this relation relevant for
inferences from topographic shape to spatial configurations of
generators follows immediately:

If two distributions of surface potentialsS1 andS2 donothave the same
topographic shape, then the corresponding generator distributionsG1 and
G2 do not have the same spatial configuration.

Thus, in the theoretical ideal, differences in topographic shape
permit valid inference to the conclusion that the spatial configu-
rations of the generators differprovidedthat spatial configuration
is defined as above. Whether or not the remaining explanations
should all be classified as differences in the spatial configuration of
generators is a semantic issue. This paper is agnostic on whether
the spatial configuration nomenclature is appropriate and the aim
here is just to clarify what does and does not follow about gener-
ator distributions from differences in surface potential distributions.

The Motivation for Amplitude Scaling of Scalp Potential
Distributions

Conventional recordings of human scalp potentials with macro-
electrodes have a temporal resolution on the order of a millisecond,
a spatial resolution on the order of a centimeter at the scalp, and
decades of research have consistently demonstrated their sensitiv-
ity to differences in perceptual and cognitive tasks. Any experi-
mental measure with these properties would thus be of tremendous
experimental value regardless of the physiological processes re-
sponsible for the effects. The fact that scalp potentials are gener-
ated by the electrochemical activity of the neural tissues that are
actually doing the perception and cognition as they are doing it is
an added bonus. Thus, in addition to their intrinsic value as a
sensitive, noninterruptive, multidimensional, real-time measure, it
is very tempting to draw inferences from scalp potentials to active
brain areas, that is, neural generators. It is uncontroversial that in
the absence of artifacts, a statistically significant difference be-
tween scalp distributions established by a Condition3 Electrode
interaction suffices to show that the distributions of neural gener-
ators differ: that is, as above, ifS1 Þ S2, thenG1 Þ G2. However,
the fact that two generator distributions differ may involve some
combination of differences in location, polarity, and strength; dis-
tributional differences in surface potentials show nothing more
specific than this. Distributional differences in surface potentials
may, for example, be the result of differences only in the overall
strength of generators and there may be no difference whatsoever
in their spatial configuration. This issue was first addressed by
Hansen and Hillyard~1980! and, subsequently, by McCarthy and
Wood ~1985!. The inferential problem is summarized in Figure 1,
which schematically illustrates three ways in which distributional
differences between conditions might be generated. In all three
comparisons~Figure 1A, 1B, and 1C!, the difference between the
two conditions is larger at some “electrodes” than others and, with
sufficient statistical power, all would yield significant Condition3
Electrode interactions in an ANOVA. For the comparison in Fig-
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ure 1A, the location and polarity of the generators is identical in
both conditions and the two distributions differ only in overall
strength. For the comparison in Figure 1B, the locations, hence
spatial configuration, of the generators differs between conditions:
The dipole closest to sensor C is shifted toward sensor F in
Condition 2. In Figure 1C, a case that will be important for
subsequent discussion, the location and polarity of the generators
is the same in both conditions, but the generators differ in relative
strength because some of them~both poles of the dipole farthest to
the right! have the same strength in both conditions whereas the
others change in strength. Because of this difference in relative
strength, the spatial configurations of the generators differ even
though their locations and polarity do not.

The difficulty inferring different spatial configurations of gen-
erators from distributional differences in scalp potentials arises
because a Condition3 Electrode interaction effect may be found
in cases like those in Figure 1A where the generators differ only in
overall strength, so clearly, this test alone cannot reliably distin-
guish such a case from cases where the spatial configurations
actually do differ. Thus, where the research question requires that
differences in overall generator strength be ruled out as an expla-
nation of differences in scalp distributions, ANOVA conducted on
scalp potentials is inadequate. To rule out differences in overall
generator strength and thereby sharpen the conclusions drawn
from Condition 3 Electrode interactions, McCarthy and Wood
~1985! considered three analytic procedures and as a general so-
lution, recommended normalizing the amplitude of the distribution
of potentials in each experimental condition by vector length.

Before introducing the details of the vector scaling procedure,
an important distinction should be emphasized. When comparing
distributions of scalp potentials in different experimental condi-
tions, two types of question must be clearly distinguished. First, do
the distributions differ between the experimental conditions? Sec-
ond, in what way or ways do the neural generators differ between
the experimental conditions? For many research purposes, it suf-
fices to determine whether there are reliable distributional differ-
ences at the scalp, and if so where they occur, that is, at which
electrode locations. For instance, on most accounts, the distribu-
tion of an ERP effect over the scalp is criterial for component
individuation. In oddball paradigms, for example, the P3b elicited
by low probability targets and the P3a elicited by novel stimuli are
distinguished in part by the centro-parietal maximum of the P3b
and the frontal maximum of the P3a. Differentiating these com-
ponents depends on establishing that there are reliable distribu-
tional differences, for example, by conducting a repeated-measures
ANOVA with Conditions and Electrodes as factors. If the Condi-
tion3 Electrode interaction effect is significant, it may be inferred
that the difference between the conditions varies by electrode
location, that is, the potentials are distributed over the scalp dif-
ferently in the different conditions. The specific electrode locations
responsible for this interaction can be identified by post hoc pair-
wise comparisons between the conditions at each electrode using a
procedure that appropriately controls the Type I error rate, for
example, with the Bonferronit procedure or Tukey~1953! test.
These standard analytic procedures suffice to secure the conclusion
that scalp distributions between experimental conditions differ and
to identify the electrode locations where the difference is reliable.
The validity of these inferences then, does not depend in any way
on normalizing or scaling the amplitude of the distributions of the
potentials in the two conditions. Indeed, if the actual distribution of
the effect is of interest, the distributions should not be scaled,
because doing so can attenuate or even shift the spatial locus of the

effect ~Picton et al., 2000, and see also our Figure 1C and Fig-
ure 7!.2 Thus amplitude normalization is not a follow-up procedure
that must be conducted to ensure that distributional differences
responsible for significant Condition3 Electrode interaction ef-
fects are statistically reliable. For some important types of infer-
ence in ERP research, amplitude scaling distributions of scalp
potentials is neither required nor appropriate. Indeed, inappropriate
application of the procedure can lead to errors when determining
the locations where experimental effects occur.

Vector Scaling

Distributions of scalp potentials were defined above as the mag-
nitudes at a set of scalp locations and represented as a vector,
S 5 ^v1 . . . va&. As detailed in the Appendix, amplitude normal-
ization by vector scaling is a two step process that first projects
potentials measured at thesea scalp electrodes onto the axes in
an a-dimensional vector space. The vector representation of the
distribution of potentials affords a perfectly general and math-
ematically precise characterization of topographic shape and over-
all amplitude: Shape corresponds to vector orientation and
amplitude corresponds to vector length. The length of a vector
and its orientation can vary independently and orientation can be
held constant under transformations that change vector length.

2Recognizing how these distributional distortions can arise is a special
case of understanding how amplitude normalization transforms scalp dis-
tributions in general. For instance, it appears to be widely accepted that a
popular type of vector scaling eliminates the main effect of condition.
Although this is true when distributions have the same topographic shapes,
when the topographic shapes differ, there may or may not be a residual
main effect of Condition~and for that matter there may or may not be a
Condition3 Electrode interaction effect!. The point can be illustrated by a
simple example with two scalp distributionsS1 andS2 for two conditions
and three electrode locations:

S1 5 ^22.323,21.333, 1.267&

S2 5 ^21.463, 0.517, 5.717&.

The vector lengths6S16 and 6S26 for S1 andS2, respectively, are given by

6S16 5 M~22.323!2 1 ~21.333!2 1 ~1.267!2 5 2.963

6S26 5 M~21.463!2 1 ~0.517!2 1 ~5.717!2 5 5.924.

Using these vector lengths to scale the corresponding distributions gives

S1Vector Scaled5 ^22.32302.963,21.33302.963, 1.26702.963&

5 ^20.784,20.450, 0.428&

S2Vector Scaled5 ^21.46305.924, 0.51705.924, 5.71705.924&

5 ^20.247, 0.087, 0.965&.

The difference between the two scaled distributions is approximately the
same at each of the three electrodes~about 0.54!, which means there is a
main effect of Condition for the vector-scaled distributions. This example
is illustrated in Figure 7, third row from the top~rounding error is respon-
sible for the discrepancies in the third decimal place between the scaled
magnitudes calculated above and the values in Figure 7!. The possibility of
main effects after normalizing amplitudes is also suggested by the vector-
scaled 36 electrode distributions illustrated in Figure 6.
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Vector scaling is one such transformation, and the actual trans-
formation is calculated by dividing each potential in the distri-
bution by the overall vector length given by the square root of
the sum of the squares of the potentials. After dividing the
potentials in the distribution by the vector length, the vector
representation of the scaled distribution has unit length, so any
distributions scaled in this way have the same overall amplitude.
Furthermore, because all the potentials are divided by the same
factor, their relative proportions, hence vector orientation and
topographic shape, are preserved~Figure 2 and Figure 3!.

Vector scaling thus eliminates overall amplitude differences
between distributions while preserving the topographic shapes,
and, in doing so, is widely thought to solve the problem of infer-
ring different spatial configurations of generators~McCarthy and
Wood, 1985; Picton et al., 2000; Ruchkin et al., 1999!. The sup-
position is that if the amplitudes of the measured potentials in two
experimental conditions are vector scaled and ANOVA on these
scaled distributions still yields a significant Condition3 Electrode
interaction, this interaction effect must be due to differences in
topographic shape, and, as reviewed above, in the theoretical ideal,
such differences in shape entail different spatial configurations of
generators.

These inferences are illustrated in the two columns on the right
of Figure 1. In an example where sources in the two conditions
have the same location and orientation and differ only in strength
~Figure 1A!, the distribution of the potentials at the seven electrode
locations shows a crossover interaction effect: The difference be-

tween the conditions is larger at some electrodes than others and
reverses polarity. In this example, the distributions differ at each
electrode by a factor of 2, so the vector representations have
different lengths but the same orientation, that is, these two dis-
tributions of scalp potentials have the same topographic shape and
differ only in overall amplitude. The plots of the two distributions
after vector scaling show that the scaled distributions are identical
and the crossover evident in the unscaled potentials has been
eliminated entirely. An ANOVA conducted on these scaled distri-
butions should be statistically unlikely to find a significant Con-
dition 3 Electrode interaction effect, and, in the absence of such a
finding, the inference to different spatial configurations of current
sources is invalid. So in this case, vector scaling has succeeded in
preventing the misattribution of the distributional difference in the
unscaled potentials to different spatial configurations of generators.

In contrast, an example in which vector scaling would support
an inference to different spatial configurations is illustrated in
Figure 1B. Here, the distributions of the potentials at the sensors
again show a crossover effect, but unlike the previous example, the
potentials at each electrode do not differ by the same scalar
multiple, so their topographic shapes differ. Scaling by vector
length clearly does not eliminate distributional differences, and an
ANOVA conducted on the scaled magnitudes is likely to find a
significant Condition3 Electrode interaction. Because the scaled
distributions differ in shape even after overall amplitude differ-
ences are removed, the inference to different spatial configurations
of generators is warranted. Finally, the third crossover effect illus-

Figure 2. Vector representations of potential distributions that have the same topographic shape. A: Representative ERP waveforms.
B: Distributions of unscaled peak amplitude measurements made at 600 ms poststimulus in Condition 1 and Condition 2. C: Vector
representation of the potential distributions in B. Note the identical vector orientations. D: Distributions of the magnitudes in
Condition 1 and Condition 2 after amplitude is normalized by vector scaling. E: Vector representation of the normalized magnitudes.
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trated in Figure 1C behaves in the same way as the example
immediately above. Here again the amplitudes at each electrode do
not differ by the same scalar factor and the distributional differ-
ences that remain after vector scaling are likely to lead to signif-
icant Condition3 Electrode interaction effects, thereby licensing
the inference that the spatial configurations of generators differs.

These examples show that in the theoretical ideal, amplitude
normalization can establish differences in the spatial configura-
tions of generators. It should be noted, however, that this is true
only if “spatial configuration” is defined in such a way that nothing
about the differences in the location or number of generators
follows from differences in their spatial configuration. Prior to
amplitude normalization, differences in the distribution of surface
potentials show that one or more of the three disjuncts is true:

1. generators differ in location OR

2. generators differ in polarity OR

3a. generators differ in overall strength or

3b. generators differ in relative strength~and not both 3a and 3b!.

After amplitude normalization by vector scaling, differences be-
tween distributions of scaled magnitudes are differences in topo-
graphic shape. Such differences show that the spatial configurations
of generators differ, that is, that one or more of the following is
true:

1. generators differ in location OR

2. generators differ in polarity OR

3b. generators differ in relative strength.

Even in the theoretical ideal, nothing stronger than this disjunction
may be validly inferred from differences in the topographic shape
of surface potentials and it is important to note, in particular, that
distributions where generators have the same locations and polar-
ity but different relative strengths count as different spatial con-
figurations. Thus, showing that spatial configurations of generators
differ is not the same as showing that the location or number of the
generators differ. The point that differences in relative source
strengths count as differences in spatial configurations has been
made before~Alain, Achim, & Woods, 1999; Picton et al., 2000!,
but the fact that this undermines the possibility of inferring differ-
ences in generator location from differences in spatial configura-
tion deserves wider attention.

Critique of Vector Scaling

Vector scaling is intended to license inferences to the conclusion
that the spatial configuration of neural current sources differs
between experimental conditions. At this point, one might be
tempted to conclude that although the distributional differences
that remain after amplitude normalization do not provide a great

Figure 3. Vector representations of potential distributions that have different topographic shapes. A: Representative ERP waveforms.
B: Distributions of unscaled peak amplitude measurements made at 600 ms poststimulus in Condition 1 and Condition 2. C: Vector
representation of the distributions in B. Note the different vector orientations. D: Distributions of the magnitudes in Condition 1 and
Condition 2 after amplitude is normalized by vector scaling. E: Vector representation of the normalized magnitudes.
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deal more inferential traction than distributional differences in the
unscaled surface potentials, they do rule out one possible expla-
nation, that is, differences in overall strength for generators with
fixed locations and polarities. Thus, there would seem to be no
harm in vector scaling as long as one does not read more into the
conclusion that spatial configurations differ than is warranted by
the facts. However, the discussion so far has considered the infer-
ential issues only in the theoretical ideal. It is argued next that
measured ERP scalp distributions unavoidably depart from this
ideal in ways that make amplitude normalization unsound even for
its limited application in ruling out differences in overall generator
strength. That is, in ERP practice, normalizing the amplitudes of
measured distributions in two experimental conditions is liable to
leave residual differences in topographic shape that arenot the
result of between-condition differences in the spatial configura-
tions of generators, even when spatial configuration is understood
in the circumscribed sense defined above.

The measured distributions of scalp potentials in experimental
ERP research depart from ideal distributions of surface potentials
generated by current sources and sinks in two fundamental ways.
First, distributions of scalp potentials recorded during the post-
stimulus interval of interest are measured by subtracting some
baseline potential distribution. Even in well-designed experiments,
where these baselines do not differ between conditions, nothing
ensures that they are numerically zero at all electrodes. When
subtracted from the poststimulus distributions of interest, these
nonzero baseline potentials can result in differences in the topo-
graphic shape of themeasureddistributions even when the post-
stimulus generators themselves do not differ in spatial configuration.
Because topographic shape alone cannot distinguish genuine dif-
ferences in the spatial configuration of poststimulus sources versus
the contribution of the baseline potential, the amplitude normal-
ization procedure does not allow valid inference to different spatial
configurations of poststimulus generators. Indeed, nonzero base-
line potentials will pose a problem for identifying generator con-
figurations for any procedure that operates on the algebraic difference
of poststimulus and baseline distributions. A second issue for
amplitude normalization is noise, for although time-domain aver-
aging across trials improves the signal-to-noise ratio, ERP mea-
surements are never noise free. Setting aside technical artifacts,
electrical interference, and noncortical potentials, which might at
least be mitigated, variability resulting from differences between
individual subjects is unavoidable. Noise is a problem for vector
scaling because it contributes to the amplitude of a distribution and
tends to increase vector length. Noise-induced overcorrection can
result in residual differences in topographic shape after scaling,
even when the spatial configurations of the generators are identical
and the levels of noise are the same. Nonzero baseline potentials
and noise variability are facts of life in ERP research and the
following section details how they render the inference from dif-
ferences in vector-scaled distributions to differences in source
configurations invalid.

Consequences of Nonzero Baseline Potentials for
Vector-Scaled Distributions
In ERP paradigms, experimental effects found in recorded post-
stimulus potentials cannot be unequivocally attributed to differ-
ences in stimulus processing because differences present before the
stimuli could persist into the interval of experimental interest. The
standard procedure to address this possible confound is to measure
the recorded poststimulus potentials by subtracting a baseline po-
tential distribution, typically recorded during a brief prestimulus

interval. This baselining procedure is well motivated, because, in
the absence of such an adjustment, a difference between the pre-
stimulus potentials would invalidate inferences that attribute post-
stimulus effects to differences in stimulus-related processing.
However, an additional assumption, perhaps implicit, is thatonlya
difference between the baseline potential distributions invalidates
such an inference, that is, that in the absence of a difference
between conditions, the numerical magnitudes of the baseline are
irrelevant for the attribution of poststimulus effects to stimulus
processing. This second assumption is unproblematic for the mea-
surement and analysis of unscaled potentials but fatal for vector
scaling.

For ANOVAs conducted on the unscaled distributions,F ratios
for the Condition3 Electrode interaction effect are invariant under
changes in the distribution of the baseline potentials as long as
there is no between-conditions baseline difference. For example, in
this type of analysis, it is immaterial whether a measured 5mV
effect is a difference between 8 and 3mV or between 3 and22 mV.
The situation, however, is quite different for vector scaling. Base-
line distributions with different numerical magnitudes result in
measured distributions with different amplitudes. Because vector
scaling is an amplitude scaling procedure and measured amplitude
depends on the baseline potentials, it is not surprising that both the
topographic shape given by the vector representation and theF
ratios obtained by conducting Condition3 Electrode ANOVAs on
vector-scaled potentials vary as a function of the numerical mag-
nitudes of the baseline potential distribution even when the base-
line distributions in the two conditions are identical. In this respect,
the analysis of potentials measured against a baseline distribution
behaves in fundamentally different ways for unscaled and vector-
scaled distributions.

The consequences of nonzero baseline potentials can be illus-
trated by extending the previous examples. Consider again a case
in which poststimulus generators in two conditions differ only in
overall strength~Figure 4A!. These generator distributions are
multiplicatively related so the scalp potential distributions have the
same topographic shape and vector scaling eliminates distribu-
tional differences. Now suppose that identical~nonzero! generators
are active during the baseline interval in both conditions~Fig-
ure 4B!. When the baseline distributions~Figure 4B! are subtracted
from the poststimulus scalp distributions~Figure 4A!, the mea-
sured distributions of potentials that result~Figure 4C5 Fig-
ure 4A2 Figure 4B! are no longer multiplicatively related. Thus,
even though the baseline distributions are identical in both condi-
tions and poststimulus sources differ only in overall strength, the
measureddistributions donot have the same topographic shape.
The inferential problem arises because the surface distributions
measured against the same nonzero baseline are indistinguishable
from surface distributions associated with generators that differ
only in relative strength, that is, Figure 1C and Figure 4C are
identical. Baseline sources and poststimulus sources have the same
effect on the topographic shape of the measured distributions; thus,
amplitude normalization treats baseline generators that are the
same in both conditions just like poststimulus generators with
fixed strength, location, and polarity. When the actual poststimulus
generators differ only in overall strength, the measured distribution
appears to have some generators that change in overall strength
~the poststimulus generators! and some that do not~the baseline
generators!. This combination looks like a difference in relative
generator strength, hence a difference in the spatial configuration
of generators. This example clearly demonstrates that distributions
of potentials in two conditions derived by subtracting the same
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nonzero baseline potentials may have different topographic shapes
even in the absence of any between-condition difference in the
spatial configuration of the generators. So, unless baseline poten-
tial distributions are numerically zero~which we, of course, may
never know!, the inference from differences in vector scaledmea-
sureddistributions to different spatial configurations ofpoststim-
ulus sources is invalid.

It is important to realize that the problem posed by nonzero
baseline potentials is not an idiosyncratic feature of this particular
example, but follows from the mathematical properties of vector
representations. Vector scaling trades on the insight that for an
a-dimensional vectorV 5 ^v1, . . . ,va&, scalar multiples ofV will
have the same orientation, that is, wheneverV '5 Vm, for scalarm,
the orientations ofV andV ' are the same. Geometrically, the tail
of the vector is anchored at the origin of the axes and multiplying
the projection along each axis bym changes the projections in
proportion to one another, stretching the length of the vector
without changing its orientation. However, the orientation of multi-
plicatively related vectorsV andV ' is not generally invariant under
the addition or subtraction of a vectorB 5 ^b1, . . . ,bj . . . ,ba& with

nonzerobj , because adding eachbj to the magnitudes projected
along the j th axis moves the head of the vector, and, unlike
multiplying by a scalar, nothing ensures that vector orientation is
preserved. So except in a few special cases, whenever two vectors
V ' andV have the same orientation, that is,V ' 5 Vm, the vector
sums~V ' 1 B! and ~V 1 B! have different orientations.

In application to the analysis of scalp potentials, this means that
if the poststimulus distributions represented byV ' andV have the
same topographic shape in the sense of vector orientation, the
distributions measured against the nonzero baseline represented by
B, that is,V ' 2 B and V 2 B, do not. The consequence of this
unspectacular algebraic fact for ERP research is that when post-
stimulus distributions generated by sources differing only in strength
are measured by subtracting nonzero baseline distributions, the
vector-scaled measured distributions do not have the same topo-
graphic shape, and normalizing these measured distributions by
vector length does not eliminate distributional differences. Non-
zero baseline potentials thus pose a fundamental problem for the
inference from vector-scaled distributions of measured potentials
to different configurations of poststimulus sources and, in general,

Figure 4. Nonzero baseline potentials can change the topographic shape of measured potential distributions. A: Poststimulus potentials
associated with generator distributions that have the same spatial configuration and differ only in overall strength. B: Identical nonzero
baseline potentials in both conditions. C: The measured potential distributions~A 2 B! do not have the same topographic shape, even
though the poststimulus and baseline distributions, considered individually, do. The algebraic difference of these poststimulus and
baseline potentials is indistinguishable from the potentials produced by generator distributions with different relative strengths
~Figure 1C!. Thus, measured potential distributions may have different topographic shapes even when there is no between-condition
difference in the spatial configuration of the poststimulus or baseline generator distributions.
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normalizing the amplitude of measured distributions tells us noth-
ing about the spatial configuration of poststimulus generators.

To explore what this argument in principle might mean in
experimental practice, simulated distributions of scalp potentials
were constructed for two experimental conditions where sources
differ in strength but not configuration. These two distributions
were embedded in zero mean normally distributed noise with a

standard deviation of 2mV for 16 subjects and 36 electrode
locations~Figure 5! and the simulation was run 1,000 times. The
distributions were then normalized by the within- and across-
subjects vector scaling procedures defined in the Appendix.

The contour and line plots give the overall average of the 1,000
grand means across the 16 subjects. The histograms give the
distribution of the 1,000F ratios for the Condition3 Electrode

Figure 5. Simulated poststimulus distributions of scalp potentials with the same topographic shape in two conditions measured against
an ideal baseline potential distribution of 0mV at all electrodes. Contour and line plots of the distributions are averages of the grand
averages across the 16 subjects for 1,000 runs for the unscaled potentials and scaled magnitudes~s.m.!. Condition~2! 3 Electrode~36!
repeated measures ANOVAs were conducted for each of the 1,000 runs. Histograms show the distribution of the Condition3 Electrode
interaction effectF ratios for the unscaled and both vector scaled distributions. The solid vertical bar at 1.46 in the histograms indicates
critical F~35,525! at p 5 .05 for the nominal degrees of freedom.
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interaction effects obtained for the Condition~2! 3 Electrode~36!
repeated measures ANOVAs. For all significance tests in this
paper, criticalF at p 5 .05 was calculated on degrees of freedom
adjusted for violations of sphericity according to Huynh and Feldt
~1976!. The contour plots for the unscaled potentials show that this
simulated negativity is a fairly large effect, with a slightly right
lateralized parietal maximum of about 5mV ~Figure 5A!. The plots
for the vector-scaled distributions show that scaling within sub-
jects greatly reduces the effect~Figure 5B!, and scaling across
subjects virtually eliminates it~Figure 5C!. The distribution ofF
ratios confirms what would be expected for a large effect in
moderate noise with 16 subjects. The vast majority of the tests
~0.962! on the unscaled potentials exceeded criticalF and because
both types of vector scaling reduce or eliminate the distributional
differences between the two conditions, far fewer of the effects
were significant~0.174 for within-subject vector scaling and 0.059
for across-subject vector scaling!. The proportions of significant
tests for the scaled distribution are restricted to those cases where
a significant Condition3 Electrode interaction effect was found
for the unscaled distributions. This example shows that both pro-
cedures, and vector scaling across subjects in particular, can do a
good job of eliminating distributional differences under the ideal-
ization that the baseline potential distribution is numerically zero
at all electrodes.

To illustrate the consequences of nonzero baseline potentials, a
second set of simulations was conducted using the same param-
eters as above, except that the poststimulus distribution was mea-
sured by subtracting a baseline potential distribution that was a
constant22.5 mV at all electrodes in both conditions. There is no
difference between the distribution of the baseline potentials them-
selves, and measuring the poststimulus distribution against this
baseline simply shifts the effect by 2.5mV. The plots for the
unscaled distributions again suggest a right parietal source that
differs only in strength between the conditions~Figure 6!.

The magnitude of the experimental effect prior to vector scaling
in this set of simulations is the same as in the first set~Figure 5A!,
and, as expected, the proportion of significantF tests for the
Condition3 Electrode interaction effect is nearly identical~0.963!.
From the algebraic argument above, the distributions measured by
subtracting the same nonzero baseline should have different topo-
graphic shapes even though the poststimulus sources differ only in
strength. The plots in Figure 6B and Figure 6C bear this out and
show that, on average, neither vector scaling within nor across
subjects eliminates the differences in topographic shape. The
between-condition effect that remains for the vector-scaled distri-
butions is of sufficient magnitude to result in Condition3 Elec-
trode interaction effects above criticalF far more often than the 5%
expected by chance. For vector scaling within subjects, the pro-
portion of significantF tests was 0.879, and for vector scaling
across subjects, the proportion was 0.486. Thus, where the null
hypothesis is that the poststimulus source configurations do not
differ, hypothesis testing with ANOVAs conducted on scaled dis-
tributions measured by subtracting nonzero baseline potentials can
lead to seriously inflated Type I error rates. In experimental prac-
tice, a baseline potential distribution would be expected to vary
from electrode to electrode and there would be noise variability in
the baseline as well, but the flat noise-free baseline serves to
illustrate the general point.

Thus, these simulations show that when the prestimulus base-
line is subtracted from the analyzed waveforms,~1! Condition3
Electrode interactions for vector-scaled distributions can be sensi-
tive to the numerical magnitude of the baseline potentials even

when the baseline distributions are identical in both conditions,
and~2! that nonzero baselines can inflate error rates when testing
for different poststimulus source configurations.

Vector scaling procedures fail to take into account the fact that
the topographic shapes of distributions of potentials in two con-
ditions may differ merely because some nonzero baseline distri-
bution was subtracted from the distributions of experimental interest.
This means that the standard and unavoidable practice of subtract-
ing baseline potentials can lead to differences in the topographic
shape after vector scaling even when there is no between-condition
difference whatsoever in the spatial configuration of the generators
either in the baseline or in the interval of experimental interest.
Although the baseline-to-mean amplitude measure has been used
to illustrate the problem, the arguments applies equally to any
measure derived from the algebraic combination of two scalp
distributions, including baseline-to-peak and peak-to-peak mea-
sures. The important consequence for the interpretation of ERP
data is that even when between-condition differences in topo-
graphic shape remain after amplitude normalization by vector
length or root mean square~r.m.s.! amplitude, it does not neces-
sarily follow that the spatial configuration of the neural generators
differs between the experimental conditions.

Two general comments are in order. First, subtracting nonzero
baseline potentials poses an interpretive problem for unscaled
potentials as well, because here, too, the resulting distribution
reflects the combination of pre- and poststimulus generator activ-
ity. However, as long as there is no between-condition difference
in the baseline potential distributions,F ratios for Condition3
Electrode interaction effects for unscaled distributions are invari-
ant under measurement against different baselines. Subtracting
nonzero baseline potentials will, naturally, change the distribution
of the unscaled potentials. However, unlike the unscaled distribu-
tions, for vector-scaled distributions, the experimental effect, that
is, the difference between the conditions after scaling,doesvary
with the numerical magnitudes of baseline distribution itself. In
this respect, the comparison of vector-scaled distributions is sen-
sitive to the specific numerical magnitudes of the baseline poten-
tials in a way that comparison of unscaled distributions is not. This
point is illustrated for a variety of nonzero baseline potentials in
Figure 7.

Second, the specific failure of amplitude normalization illus-
trated by subtracting baseline potentials is a symptom of a deeper
underlying problem that can be traced back to the mapping prin-
ciple that was used to justify the procedure in the first place
~repeated here for convenience!:

If two generator distributionsG1 andG2 have the same spatial config-
uration, then the corresponding distributions of surface potentials have the
same topographic shape.

This principle is true in theory, but the surface potentials re-
ferred to are never measured in experimental practice. In ERP
research, it is well understood that talk about “the potential at
an electrode” is a convenient fiction and shorthand for “the
difference between the potential at an electrode and some refer-
ence potential, subsequently measured against a suitable base-
line.” Thus, the quantities typically being compared in ERP
research are two distributions of potentials measured relative to
some reference and baseline potentials and these arenot mea-
surements of surface potentials in the sense required for the
mapping principle to be true. Instead, when amplitude normal-
ization is used to infer differences in the spatial configuration of
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generators, an entirely different and incorrect “experimental mea-
sure” mapping principle is tacitly presupposed:

If two generator distributionsG1 andG2 have the same spatial config-
uration, then the corresponding distributions of surface potentials plus or
minus the referenced baseline potentials have the same topographic shape.

The algebraic considerations rehearsed above show why this ex-
perimental mapping principle does not hold in general, and the
simulations and Figure 7 give specific cases where it fails. Both the
general argument and the counterexamples demonstrate that the
inference from between-condition differences in the topographic

shape of measured potentials to between-condition differences in
the spatial configuration of neural generators is not valid.

Vector scaling is intended to address a serious inferential am-
biguity, that is, that Condition3 Electrode interaction effects on
unscaled potentials can result from differences in the spatial con-
figuration of neural generators or simply from differences in gen-
erator strength alone. However, vector scaling and equivalent r.m.s.
amplitude normalization procedures require assumptions about the
distributions being scaled that are not satisfied by experimentally
measured ERP data, and, as a result, these procedures are liable to
an equally serious inferential ambiguity of their own. Condition3
Electrode interaction effects in vector-scaled distributions, that is,

Figure 6. Simulated poststimulus distributions of scalp potentials with the same topographic shape in two conditions~compare
Figure 5! measured against a noise-free flat baseline potential of22.5mV at all electrodes. All other simulation parameters are identical
to the simulations in Figure 5.

802 T.P. Urbach and M. Kutas



differences in topographic shape, can result from differences in the
spatial configuration of generators or simply from anything that
displaces the distributions relative to zero, such as subtracting a
nonzero baseline potential. Thus, vector scaling replaces one in-
ferential ambiguity with another, and, in the end, goes no further
toward securing the conclusion that spatial configurations of neu-
ral generators differ between experimental conditions.

In addition to demonstrating the confounding effect of baseline
potentials for vector scaling, these simulations also show that
vector scaling within and across subjects may give different re-
sults. Further consideration indicates that noise variability presents
a general problem for vector scaling that is independent of the
baseline issue.

Consequences of Noise on Vector Scaling Procedures
In the absence of noise, vector scaling within and across subjects
gives identical results; when there is noise variability, the two
procedures may differ, and, in some cases where the spatial con-
figuration of sources is in fact the same, neither procedure reliably
eliminates differences in topographic shape. The consequences of
variability for vector scaling have already received some attention.
Haig et al. ~1997! argue that if the covariance matrices of the
scaled potentials satisfy the assumption of homogeneity, then, of
mathematical necessity, this assumption is violated for the scaled
potentials~see Ruchkin et al., 1999, for a reply!. The concern here
is different. With unscaled potentials, the expected values of the
distribution do not change as the variability of zero mean noise
increases, because positive and negative noise components, even if
large, are equiprobable and tend to cancel out over the long run.
However, vector length is a function of squared amplitude, and as
noise variability increases, instead of canceling out, positive and
negative noise components tend to increase vector length. Thus, as
noise variability increases, so does vector length and this results in
overcorrecting the amplitude. The consequences of this overcor-
rection are illustrated for simulated potential distributions at seven
midline electrodes in two experimental conditions~Figure 8!.

The salient feature is a 2-mV effect at the parietal electrode Pz,
with smaller differences elsewhere including a 0.5-mV crossover at
the frontal electrode Fz~Figure 8A, left!. This sort of Condition3
Electrode interaction can be produced by neural current sources
differing in strength by a factor of three and is a canonical case in
which normalizing the overall amplitude by vector scaling should
eliminate the Condition3 Electrode interaction. In the absence of
noise, both vector scaling methods eliminate the Condition3
Electrode difference between the conditions~Figure 8A, center
and right! but neither method does when these same distributions
are embedded in a moderate level of noise. On average, over 1,000
simulations with 16 subjects and zero mean noise with standard
deviation 5 2 mV, the unscaled distributions approximate the
noise-free distributions~Figure 8B, left!. However, for these sim-
ulation parameters, the results of the two vector scaling procedures
differ from one another and neither converges on values that
eliminate the Condition3 Electrode interaction~Figure 8B, center
and right!. Scaling fails to eliminate distributional differences in
this case, because the amplitude over correction at moderate noise
levels has a greater impact on the distribution with the smaller
overall amplitude~compare Condition 1 and Condition 2 in
Figure 9!.

The extent to which these residual noise-related differences
inflate Type I error rates depends on several factors including the
choice of scaling procedure, the variance of the noise, the specifics
of the two distributions, and the overall amplitude difference

between them. To illustrate the combined effect of noise variability
and the contribution of nonzero baseline potentials, a series of
simulations were conducted in which both factors were varied
independently.

Error Rates as a Function of Scaling Procedure,
Baseline, and Noise
The distributions of unscaled potentials were the same as in the first
two sets of simulations and consistent with a right parietal source
differing only in strength by a factor of two~as in Figure 5A!. The
two distributions were embedded in zero mean normally distrib-
uted noise for 16 subjects and spatially sampled at 36 electrodes.
The standard deviation of the noise was varied from 1 to 10mV in
steps of 1mV and the baseline potential~noise free and constant
across electrodes! ranged from25 to 5mV in steps of 1mV. The
simulations were run 200 times for each combination of noise and
baseline. For each run, Condition3 Electrode ANOVAs were con-
ducted as specified above. The proportion of the 200 tests of the
Condition3 Electrode interaction effect that exceeded criticalF at
each level of noise and baseline are summarized in Figure 10.

For the unscaled distributions~Figure 10A!, the different base-
line potentials have no effect on the proportion of significantF
tests. At very low levels of noise, 100% of the tests exceeded
critical F, and at very high noise levels, the proportion is close to
the 5% expected by chance. Between these noise extrema, the
proportion of significant tests falls off as noise increases, and,
overall, the effect is likely to be detected as long as the standard
deviation of the noise is below about 3mV, and not very likely to
be detected when the standard deviation of the noise is above 5mV.
These unsurprising results are included to establish that the basic
distributional effect is of an experimentally plausible magnitude—
neither so small as to be lost in typical levels of noise nor so large
as to be detectable at atypically high levels of noise. For vector
scaling within subjects~Figure 10B! and vector scaling across
subjects~Figure 10C!, Type I error rates can be as high as 100%.
It has been argued that vector scaling across subjects is more
conservative than vector scaling within subjects because the for-
mer preserves between-subject variability~Ruchkin et al., 1999!,
and, with a few exceptions at low levels of noise, this appears to
be the case in the present example. Nevertheless, it is also clear
that being relatively more conservative than within-subject vector
scaling does not make across-subject vector scaling a conservative
test across the board. In addition to the inflated Type I error rates,
this example also shows that vector scaling across subjects can be
sensitive to small changes in both baseline potentials and noise: As
the baseline potential ranges between22 and 2 mV and the
standard deviation of the noise ranges between 1 and 3mV, error
rates vary from below 5% to over 80%. These simulations are
greatly oversimplified in several respects, and do not attempt to
determine the error rates for the two vector scaling procedures that
might be expected in practice. Nevertheless, having shown that
nonzero baseline potentials and noise variability are problems in
principle for the intended application of vector scaling in ERP
research, the simulations indicate these two factors can substan-
tially and systematically inflate Type I errors in the analysis of
simulated data that are not altogether unlike a typical ERP effect.

Conclusion

It is uncontroversial that reliable between-condition topographic
differentiation in the distribution of scalp potentials show that
corresponding neural generators differ in some respect or other. It
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is also widely believed that amplitude normalization, for example,
by vector scaling, can sharpen this conclusion by showing that
spatial configurations of generators differ. This paper has reviewed
why, under a suitable definition of “spatial configuration,” this
proposition is indeed true for ideal distributions of generators and
surface potentials. However, it was also argued that under this
definition, establishing different spatial configurations is of limited
interest in principle and it was shown, in addition, that the prop-
osition fails in application to ERP data. Three main points emerged.

First, the distinction between distributions of scalp potentials
and distributions of neural generators must be clearly maintained.

The only motivation for normalizing the amplitude of distributions
of scalp potentials is to draw inferences about distributions of
generators, and normalization is entirely irrelevant to the issue of
whether there are differences between distributions of scalp po-
tentials. Even if the procedure were otherwise sound, it was never
intended to be nor should it be treated as a post hoc test to ensure
the reliability of distributional differences in surface potentials.
Amplitude normalization aims to improve upon the general con-
clusion that distributions of neural generators are somehow differ-
ent by replacing it with a more specific conclusion about the way
the generators differ. For some research purposes, it is important to

Figure 7. Scalp distributions and between-condition experimental effects before and after vector scaling. The two leftmost columns
illustrate scalp distributions for recorded baseline amplitudes~B1, B2! and recorded poststimulus amplitudes~P1, P2! at three electrodes
~Frontal, Central,Parietal! in microvolts. The same two recorded poststimulus distributions are used in all examples; the baseline
potential distributions vary from example to example, but in each comparison,B1 5 B2, that is, there are no between-condition baseline
differences. The three middle columns illustrate, in order, the distribution of the unscaled measured amplitudes~M1 5 P1 2 B1, M2 5
P2 2 B2!, the vector representation of these measured distributions, and the distributions after vector scaling~VS1, VS2! in scaled
magnitudes~s.m.!. The three rightmost columns illustrate the distribution of the between-condition experimental effects for the
poststimulus potentials~P2 2 P1!, the unscaled measured potentials~M2 2 M1!, and the vector scaled magnitudes~VS2 2 VS1!. In
each plot, circles are unscaled potentials~in microvolts!, diamonds represent s.m. A: Ideal baseline potential distributions of 0mV at
all electrodes. B: Nonzero baseline potentials with the same value at each electrode. C: Nonzero baseline potentials that vary by
electrode location. For the unscaled potentials, the between-condition effect~M2 2 M1! does not change when different baselines are
subtracted from the poststimulus potentials. For the vector-scaled distributions, the between-condition effect for the scaled magnitudes
~VS2 2 VS1! varies widely when the different baselines are subtracted from the poststimulus distributions, and, depending on the
distribution of the baseline potentials, these effects may increase monotonically fromF to P, decrease monotonically, cross over, or
appear as a main effect.

Figure 8. Noise variability causes amplitude over correction in vector scaling. A: Distributions of unscaled potentials and vector-scaled
magnitudes~s.m.! with the same topographic shape at seven midline electrodes are properly scaled in the absence of noise. B: The
overall mean across 1,000 simulations where the unscaled distributions were embedded in zero mean normally distributed noise with
standard deviation5 2 mV for 16 subjects. Error bars indicate mean standard error over the 1,000 simulations. Vector scaling tends
to overcorrect the amplitude of Condition 1 and does not eliminate distributional differences.
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draw such inferences; for other purposes it is not, and blanket
insistence on amplitude normalization runs roughshod over this
distinction.

Second, even for ideal distributions of generators and surface
potentials, the extent to which amplitude normalization refines
conclusions about generator distributions is rather limited. Prior to
amplitude normalization, differences in scalp distributions show
that neural generators differ in some combination of location,
polarity, and relative strength or overall strength. After amplitude
normalization, residual differences show that neural generators
differ in some combination of location, polarity, or relative strength,

that is, differ in spatial configuration. That is, of all the possible
combinations of differences in generator locations, polarities, and
strengths that could lead to different scalp distributions, amplitude
normalization at best only rules out the one special case where the
generators in the two conditions all have the same locations, have
the same polarities, and differ in strength by the same multiplica-
tive factor. If, after this case is ruled out, the remaining possibilities
are lumped together as differences in the spatial configurations of
the neural generators, then amplitude normalization can in theory
establish that the spatial configurations of neural generators dif-
fers. However, for this to be true, different spatial configurations

Figure 9. Vector length increases with noise variability. Plots give the mean across 1,000 simulations in each of two conditions for
the distributions of unscaled potentials from Figure 8 over a range of noise levels. The unscaled potentials for 16 subjects at seven
electrodes were embedded in noise with standard deviations ranging from 0mV ~noise free! to 5 mV. The distributions of the scaled
magnitudes~s.m.! show that at moderate levels of noise, scaling by vector length fails to eliminate distributional differences even when
ideal ~noise-free! topographic shapes are identical.
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must be defined so broadly that nothing follows about differences
in the location or number of generators from differences in spatial
configuration. On this definition of spatial configuration, for ex-
ample, the same number of generators occurring in exactly the
same locations may be different in spatial configurations, provided
their relative strengths differ. Thus, although amplitude normaliza-
tion can, in principle, establish that spatial configurations differ,
this in fact does little to narrow down the range of possible
explanations for the distributional differences in surface potentials.

Third, it was argued that quite apart from these limitations
regarding what amplitude normalization can show in principle,
there are fundamental problems in applying amplitude normaliza-
tion procedures to measured distributions of scalp potentials in
ERP research. Nonzero baseline potential distributions and noise
are unavoidable and it was shown that both pose problems for the
interpretation of differences between amplitude-normalized distri-
butions in ways that they do not for unscaled potentials. Specifi-
cally, both nonzero baseline distributions and noise can lead to
between-condition differences in topographic shape even when the
spatial configurations of generators are identical. A series of sim-

ulations demonstrated how both nonzero baseline potentials and
noise can lead to inflated Type I error rates when amplitude
normalization is used to reject the null hypothesis of no difference
between spatial configurations of generators. Thus, in principle,
amplitude normalization is limited to ruling out the special case of
an overall difference in generator strength as an explanation of
distributional differences in scalp potentials: in ERP practice, it
cannot do even this reliably.

Consideration of the consequences of the baseline potentials
and noise shows that amplitude normalization is unreliable in its
intended application in ERP research and the practice should be
discontinued. However, because amplitude scaling is wholly irrel-
evant to establishing distributional differences in the surface po-
tentials themselves, and even in principle provides only limited
inferential traction in determining the specifics of how distribu-
tions of neural generators differ, it is not clear that much is lost by
abandoning the procedure. Indeed, much is gained if experimental
results that do not constitute good evidence for differences in the
spatial configuration of neural generators are not treated as if they
did.
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APPENDIX

Vector scaling normalizes the overall amplitude of a distribution of
scalp potentials, and in ERP practice, there are different candidate
distributions for scaling: single-trial data, within-subject averages
~across single trials!, and grand means~across-subject averages!.
McCarthy and Wood~1985! caution against scaling single-trial
data because of the effects of noise. The publication guidelines of
Picton et al.~2000! recommend normalizing amplitude based on
across-subject averages and a within-subject procedure is men-
tioned in a footnote. To vector scale within subjects, the distribu-
tion of each subject’s mean across trials in a given condition is
divided by the vector length of that same distribution. In this
procedure, the scaling terms will generally vary from subject to
subject. To vector scale across subjects, the vector length of the
grand mean distribution across subjects is computed for a given
condition and then each subject’s condition mean across trials is
divided by this scaling factor. In this across-subjects scaling pro-
cedure, the scaling term for each condition is the same for all
subjects.

In a typical ERP experiment, EEG data are recorded for Sub-
jects i 5 1, 2, . . . , n at electrodesj 5 1, 2, . . . , a in different
experimental conditions. For each subject, the single-trial EEG
data recorded at each electrode are typically time locked to a
stimulus onset and averaged across trials in each condition. These
time-domain waveforms are then reduced to the dependent mea-
sure of interest, for example, mean potential 300–500 ms post-
stimulus relative to the mean potential in a 100-ms prestimulus
baseline at each electrode. LetXij denote the measured potential in
ConditionX for Subjecti at Electrodej.

Vector Scaling within Subjects
First, the within-subjects vector length6Xi.6 for Subjecti in Con-
dition X is computed as

6Xi.6 5 !(
j51

a

Xij
2

Then, the within-subject vector-scaled magnitude in ConditionX
for Subjecti at Electrodej is computed as

Xij

6Xi.6

In this procedure~Picton et al., 2000, p. 147, footnote!, different
vector lengths are obtained for each subject and each condition.
Each of the original subject- and condition-specific distributions
~Xij for Subjecti and Electrodesj 51, 2, . . .a! is scaled by its own
vector length, which eliminates overall amplitude differences be-
tween subjects as well as conditions.

Vector Scaling across Subjects
Let PX.j denote the grand mean across subjects at Electrodej in
ConditionX, that is,

PX.j 5
(
i51

n

Xij

n

First, compute the across-subjects vector length,6X..6, for Condi-
tion X as the vector length of the grand mean distribution across
the n subjects, that is,

6X..6 5 !(
j51

a

PX.j
2

The across-subject vector-scaled magnitude in ConditionX for
Subjecti and Electrodej is then computed as

Xij

6X..6

In this procedure, a single scaling factor,6X..6, is used to scale the
distributions for all the subjects in ConditionX. By doing so, the
grand mean amplitude is normalized between conditions without
eliminating between-subjects amplitude variability. This formula-
tion of the vector scaling procedure differs slightly from the pro-
cedure for scaling across subjects by r.m.s. amplitude recommended
in Picton et al.~2000, p. 147!. However, theF ratios computed in
ANOVA are identical under both the r.m.s. amplitude and vector
length scaling procedures, so for the intended purpose of normal-
izing overall amplitudes of scalp distributions, the two procedures
are equivalent.
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