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Abstract

Signals from eye movements and blinks can be orders of magnitude larger than brain-generated electrical potentials

and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials

causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may

impact the cognitive processes under investigation. This article presents a method based on blind source separation

(BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal-processing methodology that

includes independent component analysis (ICA). In contrast to previously explored ICA-based methods for artifact

removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular

components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the

approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and

electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.

Descriptors: Electroencephalogram, Artifact, Electrooculogram, Automated, Blind source separation, Independent

component analysis

Eye movements and blink contamination are pervasive problems

in event-related potential (ERP) research. The electric potentials

created during saccades and blinks can be orders of magnitude

larger than the electroencephalogram (EEG) and can propagate

across much of the scalp, masking and distorting brain signals.

This report describes a novel, robust, completely automated

method for eliminating electroocular contamination from EEG

signals using statistical criteria applied to data components

obtained using a blind source separation (BSS) algorithm. The

principles of this method can be extended to certain other sources

of artifacts as well. To our knowledge, no automated BSS-based

methods correcting for ocular artifacts in EEG data have been

developed with the exception of a semiautomated method by

Delorme, Makeig, and Sejnowski (2001). Automated methods

are preferable because they eliminate the subjectivity associated

with nonautomated correction, are significantly more time and

resource efficient, and can make it practical to use such

applications during on-line EEG monitoring for clinical and

other uses. Ocular artifacts are nontrivial to measure and model

in part because they are generated by two (or more) distinct

mechanisms that induce very different propagation patterns

across the scalp. Blink artifacts are attributed to alterations in

conductance arising from contact of the eyelid with the cornea

(Overton& Shagaas, 1969). An eyeblink can last from 200 to 400

ms and can have an electrical magnitude more than 10 times that

of cortical signals. Themajority of this signal propagates through

the superficial layer of the face and head and decreases rapidly

with distance from the eyes. Eye movements generate another

type of electric signal. The cornea of the eye is positively charged

relative to the retina, which amounts to having a steady retino-

corneal charge of between 0.4 and 1.0 mV that approximates a

dipole in both eyes. As the retino-corneal axis rotates during eye

movements, the orientation of this dipole in three-dimensional

space also rotates, resulting in changes in electric potential. The

signals due to eyemovement propagatemainly through the shunt

pathway provided by the eye sockets. These signals attenuate

more slowly than blink signals, but because the latter tend to

generate much larger electrical amplitudes, both ocular artifacts

have extensive spread, reaching even occipital electrode sites.

Some of the methods devised for dealing with ocular artifacts

seek tominimize their presence by restricting eye movements and

blinking during data collection or by excluding artifact-

contaminated trials from the analyzed data. Other methods seek

to correct for ocular artifacts in the data; these include

subtraction or regression in the time or frequency domain (see

Gratton, 1998, for a review) and methods that model the

electrooculogram (EOG) components to isolate them from the
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brain signals (see Lins, Picton, Berg, & Scherg, 1993a, 1993b, for

an evaluation).With very few exceptions, the lattermethods (i.e.,

modeling) use either: (1) localization (source modeling/imaging)

of active generators of recorded data (e.g., Berg and Scherg,

1991a) or (2) decomposition of scalp data into underlying

components (component modeling) with the idea of capturing

the independent processes that contribute to the scalp recordings.

The localization methods model EOG generators as dipoles and

subtract their contribution from the EEG data. This approach is

tantamount to learning the locations of electrically active sources

inside and outside the brain at a given time. The general

nonuniqueness of source localization solutions and the poor

spatial resolution afforded by EEG data, particularly if sources

are closely spaced (e.g., Achim, Richer, & Saint-Hilaire, 1991),

are two well-known issues that limit applicability of this

approach. Another limiting factor is the nontrivial propagation

of EEGand EOG signals across the head and scalp, whichmeans

that the distribution of the tissues in the head must be known

precisely to model this propagation accurately throughout the

head.

Decomposition methods identify individual signal compo-

nents in EEG data without reference to head or source

propagation models, so they are not subject to the above

constraints. EEG component separation procedures using

principal components analysis (PCA) and its counterpart,

singular value decomposition (SVD) were proposed by Berg

and Scherg (1991b) and Sadasivan and Dutt (1996), among

others. By definition, PCA and SVD assume that the data

components are algebraically orthogonal, a condition that, in

general, is hard to satisfy. The actual algebraic relationship

between source vectors is a function of each source location,

orientation, and to some degree the head conductance para-

meters. Orientation of certain ocular generators (e.g., blinks)

may even be nearly aligned with orientation of frontal

EEG generators. A more advanced method (Berg & Scherg,

1994) that combines source modeling, PCA, and artifact

averaging provides an improvement on the individual techniques

above but requires a substantial amount of calibration data and

priormodeling of artifact production and event-related activities.

More recently, Vigario (1997), Jung et al., (2000), and a number

of other researchers have turned to ICA for finding components

of EEG/EOG data. ICA aims to project (decompose) data onto

statistically independent components utilizing higher-order

statistical measures, beyond the second-order statistics used by

PCA. These methods represent a subclass of the general group of

blind source separation (BSS) algorithms.

An independent component analysis (ICA)-basedmethod for

removing artifacts semiautomatically was presented in Delorme

et al. (2001). Although it is automated to flag trials as potentially

contaminated, these trials are still examined and rejected

manually via a graphical interface. The method is designed to

eliminate all types of artifacts by considering them as ‘‘odd’’ data

points, using statistical criteriaFprobability distribution and

kurtosisFto measure trial ‘‘oddness.’’ There are several

differences between this approach and the one proposed herein.

First, the motivation for the current procedure is different, as it

comes out of an interest in studies where eye movements are an

integral part of an experiment rather than an unexpected event.

Using measures to identify trial oddness would not be appro-

priate in this case. Second, the current approach seeks to correct

optimally for one particular artifact, rather than to reject many

different types of artifacts via a single procedure. With this goal

in mind, the method is tuned to exploit the particulars of ocular

signals, achieving sufficient accuracy to allow for a completely

automated artifact correction. Third, the current procedure

teases out the EOG from EEG rather than rejecting artifact-

contaminated trials. Last but not least, the current procedure

does not use ICA but a BSS approach called second order blind

inference (SOBI; Belouchrani, Abed-Meraim, Cardoso, &

Moulines, 1997), which uses decorrelation across seveal time

points as its basic computational step. This seemingly simple

approach has proven very powerful in separating EEG from

EOG sources.

One may wonder why component-modeling methods are not

subject to the same poor spatial resolution from EEG data as are

source localization methods. One chief reason is that component

modeling does not require models of signal propagation across

the scalp, thus eliminating a large source of inaccuracy in source

estimation. Another reason is the difference in how the data are

utilized by BSS compared to the source localization algorithms.

BSS uses statistical relationships between the electrical signals

(components) to identify them. Thus, closely spaced neural/

ocular activities with different temporal dynamics can be

identified as physiologically separate processes by virtue of the

statistical properties of the components generated by the

processes. Finally, BBS method outputs do not identify the

absolute source head locations, only their relative positions with

respect to other sources, which is a simpler problem to solve.

Thus, it does not generate the same errors when data resolution is

limited.

Methods

Developing a practical optimized method requires consideration

of issues beyond the algorithm itself. Issues concerning how to

best register and prefilter ocular signals are described first,

followed by a discussion of the SOBI algorithm and the

procedure for automated classification of artifacts. Each step is

illustrated by an example using data recorded from 15 scalp and 6

EOG electrodes, referenced on-line to the left mastoid, and

sampled at 500 Hz with an on-line bandpass filter from 0.016 to

100 Hz.

Practical Design Issues

EOG electrode placement. Good sampling of eye-generated

signals is essential for separating out the ocular artifacts in EEG

data. Generally, two horizontal (one left, one right) and two

vertical (one upper, one lower) electrodes are sufficient to get

good separation of the eye-movement-related components

(Joyce, Gorodnitsky, King, & Kutas, 2002). Figure 1 (column

2) shows that, when using only one horizontal and one vertical

electrode, the method leaves residual EOG noise in the corrected

data whereas using two horizontal and two vertical electrodes

(one upper, one lower for one eye) yields better results (column

3). Adding upper and lower electrodes to the other eye does

little to improve the correction over the four-electrode case

(column 4).

The issues of electrode placement and referencing are closely

linked. Inmany cases, separation usingmonopolar (referenced to

a common electrode, e.g., mastoid) and bipolar (upper

referenced to lower, left referenced to right electrodes) EOG

yields similar solutions. For this method, however, monopolar
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EOG recordings are essential for automating the procedure. In

general, monopolar EOG data are preferable in ocular artifact

detection routines because any misalignments between the cross-

referenced electrodes in bipolar recordingsmay introduce offsets,

essentially slow drifts, into the data. Figure 2 illustrates that

better separation and correction are obtained with monopolar

EOG recordings when eye-related drift is present in the recorded

signal. As stated above, the monopolar recordings shown in

Figure 2 are referenced to left mastoid.

Correction for instrument response artifacts. The key to

applying BSS to the problem of finding data components is

consistent registration of signals across all sensors. Two issues

arise with respect to fulfilling this requirement. One is the need

for a common gain scale. A frequent practice when recording

EEG data is to adjust the gain on some channels, particularly

those around the eyes and over frontal areas, where large signals

might exceed the maximum parameters of the circuit, resulting in

data loss and/or distortion. Without such a gain adjustment, the

amplitude of the blink signal would be largest at the EOG and

frontal electrodes, diminishing with distance from the eyes.

However, adjusting the gain on these electrodes to avoid

blocking distorts the relative size of the ocular signals across

the channels. Therefore, gain must be normalized across all

channels prior to submitting the data to any artifact detection/

correction algorithms.

The second issue is relevant to those using many of the

common types of AC amplifiers to record EEG signals. Slow

eye movements induce near-DC signals that register with some

attenuation factor at electrodes across the scalp. Many AC

Automated removal of EOG artifacts 315

Figure 1. Column one shows raw data and columns two through four show BSS-corrected data using two, four, and six EOG

channels, respectively. Note especially in the left VEOG channel, the remaining blink contamination with only two EOG electrodes,

whereas this is much reduced for both four and six EOG electrodes. The solutions for four and six electrodes are virtually identical.



amplifiers used in EEG research distort the DC and near DC

components. The distortions are in the form of a drift that can be

observed in any channel that registers slowly changing compo-

nents. Moreover, technically identical AC amplifier circuits

housed in different amplifier channels may distort DC signals at

different rates. The problem is thus akin to the channel

normalization issue in the sense that instrument response is not

identical across channels. This is an important but under-

appreciated point. One cannot count on removing the AC bias

simply by finding its component in the data; it must be corrected

on a channel-by-channel basis.

The effect of uneven gains and distortions across electrodes is

tantamount to ‘‘shifting’’ the position of origin of the ocular

signals away from the eyes toward anterior channels, such that

the ocular component may be estimated incorrectly. To remedy

this problem, responses of the individual channels must be

equalized. Gain normalization is fairly standard and can be

found inmost EEG processing software. The channels are simply

scaled proportional to the magnitude of square wave calibration

pulses measured for each channel. The AC amplifier distortions,

on the other hand, are not simple to rectify because amplifier

responses can be quite different from their technical specifica-

tions and can vary across channels for amplifiers of identical

make. Joyce, Gorodnitsky, Teder-Sälejärvi, King, and Kutas

(2002) recently presented one method for correcting AC-related

distortions. The description of the method is somewhat lengthy

and the reader is referred to that paper for further details.

Note that the problem with AC amplifiers cannot be

circumvented by using DC amplifiers for EOG channels and

AC amplifiers for EEG, because DC distortions will register
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across many EEG channels. To the extent that the AC amplifiers

generate a bias, it will distort data in those channels. To make

instrument response as consistent as possible across all channels,

one must use the same type of amplifier for both the EEG and

EOG recordings.

A separate issue from the ones just described is that slow drifts

can leak into data from the reference channel. This artifact,

however, is consistent across channels and can be removed by

identifying the common component via BSS decomposition. The

procedure presented here uses this method to remove this bias.

Blind Source Separation

The raw scalp data represent a projection of a set of signals,

which are a mix of brain and artifact information, onto the

electrode sites. Blind separation reduces mixtures of neural and

nonneural variables to components that are in some way inde-

pendent of each other. Different ways ofmeasuring independence

give rise to different BSS algorithms.

The idea behind BSS analysis is to produce components that

correspond to distinct neural and nonneural activity, for

example, an externally generated noise or an ocular artifact.

These components are found without using signal propagation/

head models: The data are ‘‘blindly’’ processed. The advantage

of this is that BSS algorithms are not affected by errors in head

propagation models. The disadvantage is that there is no

guarantee that any particular BSS method can capture the

individual signals in its components.

Component estimation from EEG data is formulated as

follows. Electromagnetic waves throughout the head combine

linearly to produce the total current measured at the scalp.

Accordingly, unmixing scalp data into components can be done

through a linear rotation (projection). This is written in a

mathematical form as follows:

S ¼ W �D; ð1Þ
meaning that the sensor dataD is rotated by an unmixing matrix

W to arrive at the components S. To clarify, all quantities in

Equation 1 are matrices. The inverse, W� 1, is referred to as the

mixing matrix, each column of which describes signal propaga-

tion from an individual source to each electrode site. Thus W� 1

is similar to the forward model of source imaging methods.

Given that nothing except the data, D, is known in Equation

1, assumptions about the signals (components) must be made in

order to define the unmixing matrix, W. The difference among

various BSS methods is in how each measures the independence

between the components. This, in turn, defines the matrix, W,

and the components that are obtained. ICA algorithms assume

that the components are statistically independent at each time

point and use higher (e.g., fourth) order (spatial) moments of

data in their estimation. The relationships across time (i.e.,

between component values at different time lags) are not

considered by ICA algorithms.

The SOBI algorithm used in the current analysis is based on a

different set of assumptions and thus produces different data

components. SOBI considers the relationship between compo-

nent values at different time lags and insists that these values be

decorrelated as much as possible. Note that they cannot be

decorrelated completely because a perfect zeroing of data cross-

correlations at several time lags simultaneously with a single

rotation matrix is mathematically impossible. This defines a

major strength of SOBI: Its remaining correlated components

can isolate highly temporally correlated sources (Belouchrani,

Abed-Meraim, Cardoso, & Moulines, 1993), something that

most ICA algorithms cannot do.

Mathematically, thematrix of the cross-correlations of sensor

data at time lag s can be written as

RðsÞ ¼ E½xðtÞxðt� sÞ0�; ð2Þ

where E[ ] is the expectation operator. The cross-correlation

terms at time delay s are contained in the off-diagonal terms of

thismatrix. The unmixingmatrix,W, in SOBI is computed as the

matrix that jointly diagonalizes a set of p whitened cross-

correlations matrices {RW(si)| i5 1,y, p}. Hence the projection

axes in SOBI are constrained by a statistic that is averaged in two

separate ways over time: One average occurs when the cross-

correlation of sensor data at a fixed delay is used, and the second

when an aggregate metric of several delays is used.

SOBI’s ability to resolve correlated activity is a crucial feature for

ocular artifact detection because the ocular movement signals

coming from the two eyes are highly correlated. More importantly,

these signals can be highly correlated with frontal activity and

signals coming from the parietal area that are related to motion

control. A validation study of correlated EEG/EOG component

separation was performed using data described in Gorodnitsky and

Belouchrani (2001) in which the authors used carefully calibrated

eye motion recordings to evaluate ocular artifact components

obtained from various BSS/ICA algorithms. The results of the

complete study are still in preparation, but in brief, the authors test

three popular ICA algorithms: extended Infomax (Lee, Girolami,

& Sejnowski, 1999), fICA (Hyvarinen & Oja, 1997), and JADE

(Cardoso & Souloumiac, 1993), in addition to SOBI. They find

only SOBI capable of successfully identifying, in a consistent

manner across many different sets of data, the highly temporally

correlated components generated by the two eyesmoving in unison,

in addition to what appear to be components of frontal and

nonfrontal brain activity correlated with ocular motion.

Clearly, it is difficult to evaluate the quality of various BSS

solutions given the inability to directly measure the individual

electric signals that comprise the EEG data. In this situation, it is

prudent to choose the BSS algorithm whose assumptions most

closely fit the properties of the physical problem at hand. The

algorithms that do not provide a close fit unavoidably will lead to

components that do not match the actual EEG/EOG sources.

Besides its ability to separate correlated activities, SOBI has very

lenient requirements regarding the data and their sources. Such

considerations in conjunction with empirical validations similar

to one described in Gorodnitsky and Belouchrani (2001)

identified SOBI as the best algorithm for this particular analysis.

SOBI was also independently selected by Tang, Pearlmutter,

Malaszenki, Phung, and Reeb (2002) to find components of

cognitive activity, which typically generates weak signals, in a

magnetoencephalography (MEG) study.

A considerable number of ICA based EEG/EOG analyses

have been published to date, but not necessarily with sufficient

background to enable an EEG practitioner to choose among the

different algorithms. Given the importance that the algorithms’

underlying assumptions have on solution quality, some back-

ground material on BSS is presented in the Discussion.

Note that the present discussion does not mean to imply that

SOBI is the overall best approach for decomposing EEG sensor

data into meaningful components. At the time this study was

conducted, SOBI offered the best performance among the

existing BSS (ICA) algorithms for this specific application.

Further improvements to BSS methods for EEG analysis are
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possible and clearly needed. As improvements are made in

algorithms for EEG analysis, a BSS algorithm of choice can be

substituted easily in the automated procedure described herein.

Results

Automated Isolation and Removal of Ocular Components

Before describing the step-by-step automated ocular artifact

correction method, it is worth noting that a simpler way to

correct for artifacts may be possible in the future if algorithms

can be developed which consistently and with high precision

extract the pure components of ocular activity. Then the signals

originating from the eyes can be identified from those

components and removed from the EEG data by nulling the

columns of the matrixW� 1 in Equation 1 that correspond to the

ocular sources. In an ideal BSS decomposition, each column of

W� 1 represents a forwardly modeled dipole (active source). The

forward model, which can be described by the linear Poisson

equation, describes the geometric relationship between the dipole

and the electrode positions. The absolute dipole (source)

locations can then be obtained from the W� 1 column values in

conjunction with the estimated signal amplitudes by applying

certain additional geometric considerations.

As it stands now, the BSS methods cannot yet be trusted to

consistently identify pure individual signal components. Even

though SOBI separates the ocular activity quite cleanly from the

rest of the data components, small amounts of leakage between

the ocular and nonocular components can occur, and the ocular

sources also may be represented in several components each

reflecting some part of the eye motion. As a result, a geometric

mapping of the components would reveal a distribution of
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Figure 3. Column one shows preprocessed data at all recorded sites (15 EEG, 1 mastoid, 6 EOG). Column two shows the

components extracted using SOBI.



sources that fall in the vicinity of the eyes, rather then on the eyes

themselves. This can give rise to uncertainty as to which

components are frontal and which are ocular. The method

described here identifies the artifact signals using an alternative

approach: a novel data reversal step and a cross-correlation test.

It is important to understand here that there is no claim that the

components found contain pure ocular and brain signals.

However, the majority of the ocular signal power can be

identified and extracted, leaving relatively minor noise in the

data. For most EEG/ERP studies involving identification of

gross brain responses (e.g., evoked responses), the accuracy

provided by the present method should be quite good.

The automated procedure for extracting and removing ocular

components can be broken down into five steps, as follows:

1. Decompose the data onto a set of components (i.e., rotate to

new axes) using a BSS algorithm.

2. Reverse the sign on all lower and horizontal EOG channels

(i.e., multiply signals by � 1) and again decompose data onto

components using a BSS algorithm. Flag those components

that invert.

3. Flag BSS components that correlate above a certain level with

the preprocessed lower and horizontal EOG channel data.

4. Flag BSS components with high power in the low frequency

band.

5. Remove from the data those components identified in Step 2,

and those that were identified in both Steps 3 and 4.

Step 1. Figure 3 illustrates the first step of the procedure

where SOBI is applied to one trial of preprocessed EEG/EOG

data. BSS methods determine component waveshapes uniquely

up to an arbitrary scale factor, giving the user freedom to choose

a consistent scaling convention. In this implementation, SOBI

normalizes the component amplitudes (i.e., each component is
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scaled to have a normalized amplitude value equal to 1). For this

reason, small noise components in Figure 3 appear as large as eye

movement components. The gain on the projection of a

component onto each single electrode (i.e., how much it

contributes to data recorded at that electrode) is contained in

the inverse matrix, W� 1, of Equation 1. Note that SOBI

separates saccades (e.g., channel LH, left horizontal eye, and

component ‘‘3’’), as well as blink information (channel LU, left

upper eye, and components ‘‘8’’ and ‘‘21’’).

Step 2. In the second step, the procedure of Step 1 is repeated,

but with data from lower and horizontal EOG channels inverted

with respect to the x-axis (i.e., multiplied by � 1). The lower and

horizontal EOG channels register signals generated primarily by

and around the eyes (plus noise) and only weak fluctuations due

to brain activity because these electrodes are located sufficiently

far from the brain. For this reason, the SOBI components

corresponding to those EOG specific signals that do not

propagate far (noise, muscle artifact, small eye movements)

become inverted with respect to their counterparts in the original

component matrix obtained in Step 1 (matrix S of Equation 1).

The decomposition of Step 2 is shown in Figure 4 with the

inverted componentsmarked byXs on the right side of the figure.

Note that upper eye channel data are not inverted, as those are

likely to contain frontal cortical components that should not be

inadvertently eliminated. The components that invert in Step 2

are then eliminated from matrix S of Equation 1.

Step 3. The components containing larger eye movements

and blinks do not invert in Step 2 of the procedure because the

corresponding signals propagate across the scalp and are strongly

represented at many EEG electrode sites. Steps 3 and 4 work

together to find these large blink and saccade components. In

Step 3, the components (rows of matrix S) from Step 1 are

320 C.A. Joyce, I.F. Gorodnitsky, and M. Kutas

Figure 5. Column one shows preprocessed data at all recorded sites (15 EEG, 1 mastoid, 6 EOG). Column two shows the

components extracted using SOBI. Components that correlate with EOG channel data (LU, RU, LL, RL, LH, RH) at 0.3 or better

are marked (X) for elimination.



correlated with the lower and horizontal EOG channel data. The

idea here is that the components containing eye activity will

correlate more strongly with the lower and horizontal electrode

data than they will with the nonocular components because these

eye electrodes reflect primarily the ocular motions and not the

brain activity.

The correlation threshold level at which the component was

flagged as a candidate for elimination was found as follows. As

explained above, to a certain approximation, components

originating in the vicinity of the eyes can be identified from the

geometric relationships contained in the columns of W� 1.

Looking at the trials providing the cleanest separation of the

ocular components, a large gap in correlation values is evident.

The values were always significantly above 0.3 for SOBI

components identified as originating in the vicinity of the eyes

and below 0.3 for components that did not originate near the

eyes. Hence the 0.3 threshold level was used in these studies to

flag the SOBI components from Step 1 as shown Figure 5.

However, as sampling rate can affect this relationship (these

results are based on data sampled at 500 points per second),

researchers should independently verify the corresponding

correlation threshold level for their own data.

Step 4. The fourth step is employed to ensure that

components containing nonocular, frontally generated signals,

which also may correlate highly with EOG channel data, are not

inadvertently eliminated. These components contain enough

higher frequency brain activity that they can be distinguished
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Figure 6. Column one shows the preprocessed data. Columns two and three show the components extracted by SOBI; in column

three those marked for elimination have been nulled. Column four shows the corrected data recombined from the remaining

components in column three and the propagation information.



from ocular components using a high-pass filtering operation, as

follows. The components found to correlate with lower and

horizontal EOG channels at greater than 0.3 are differentiated

(derivatives computed across time). If the rootmean square (rms)

level (standard deviation) of the derivative is low, it is an

indication that the component does not contain high frequency

information. As in Step 3, using very clean data separation cases,

a significant gap was found at rms level 0.2 between what

appeared as ocular versus frontal components. This threshold

rms level (0.2) was used for final elimination of the components

(Figure 6).

Step 5. In the final step, the corrected EEG data is

reconstructed. All ocular components found in Step 2 and the

combined output of Steps 3 and 4 are eliminated by zeroing the

corresponding rows in the S matrix, creating Sn, or by throwing

out these rows of S and the corresponding columns of the W� 1

matrix. The data are then reconstructed by multiplying the

matrixW� 1 with the correctedmatrixSn. Figure 7 illustrates this

reconstruction in which the EEG signals are preserved with no

detectable EOG contamination.

Note from Figure 7 that the changes in morphology are

greatest at EOG channels, and decrease from anterior to

posterior electrodes with little or no change at occipital sites.

This correction is consistent with how eye movement signals

propagate across the scalp. Occasionally changes in morphology

at posterior electrode sites are caused by the procedure. This

appears to occur in cases where there is some drift in all

electrodes, implicating drift at the reference site. Because this

drift is as highly correlated with eye channels as with EEG

channels, and contains mainly low frequencies, it is eliminated by

the procedure. This is in fact desirable. Channel drift and

noise generated at EOG electrodes are also eliminated by this

method.
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Figure 7. Corrected data is shown in the thick line and raw data in the thin line for select electrodes. Notice that corrections are

largest in the EOG channels overall, largest in frontal channels for vertical contamination, and largest at the temporal channel for

horizontal contamination. Notice also that there are virtually no changes at the occipital sites (small changes are due to the effects of

bandpass filtering).



Figure 8 illustrates another example using averaged data.

Averages of 100 artifact-free trials and 100 trials containing

ocular artifacts taken from the same individual within the same

experimental paradigm are shown both prior to and following

application of the EOG correction procedure. Note two things:

(1) the averages containing the artifact-free trials are relatively

unaffected by the correction procedure (other than some general

drift correction), and (2) the average of the contaminated trials

following correction is virtually identical to the average of the

artifact-free trials.

Discussion

This article presents a procedure for automated correction of

ocular artifacts in EEG records using blind source separation and

correlation metrics. The methodology can open many doors for

investigators to allow more natural, free viewing of stimuli

in ERP studies. The technique presented here can be extended

to eliminate certain other sources of artifacts as well. Electrode

drift and electrocardiac signals can be addressed in a straightfor-

ward manner by this approach albeit using different tuning

parameters to classify the signals based on their specific

characteristics. Vocalization and cranial muscle movement

artifacts are similar to EOG artifacts and thus also can be

removed by adapting the present technique provided electrodes

are placed where signals from these artifacts can be captured.

Currently these artifacts are dealt with by discarding contami-

nated trials. Other types of artifacts, such as smallmuscle spasms,

may be best addressed by different data filtering approaches.

Small muscle activity, for example, tends to saturate single
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Figure 8. A: An average of 100 EOG artifact-free trials (black thin line) is plotted against an average of 100 trials containing ocular

and drift artifacts (gray thin line). B: Those same 100 trial averages are plotted after application of the EOG correction procedure to

each trial (thick black line5EOG artifact free, thick gray line5 artifacts). Note that there is even some small change to the EOG

artifact-free trials due to the DC correction procedure and the fact that the EOG correction procedure eliminates some drift artifact

as well. C: The EOG artifact-free averages before (thin line) and after (thick line) correction. D: The EOG contaminated averages

before (thin line) and after (thick line) correction. The data are from a midline frontal electrode site (FZ), courtesy of Tom Urbach

and Marta Kutas.



rather than distributed electrode sites. BSS-based approaches,

thus, may not be ideal for detection of muscle-related

components in this situation; analysis and filtering of raw

potential values at individual electrode sites may be a better

approach for this type of noise.

As discussed earlier, the key to assuring that the BSS

components cleanly capture the artifact signals and separate

them from the components of brain activity is to choose a BSS

algorithm whose underlying assumptions most closely match the

physical properties of the problem at hand. Such considerations

are necessary because BSS solutions cannot be validated by

directly measuring the activity at individual sites in the head.

SOBI’s ability to separate correlated signals is one reason for the

differences in the observed performance of SOBI versus the ICA

algorithms and the primary reason it was chosen for the current

procedure. SOBI offers a number of additional favorable

properties worth reviewing here. SOBI uses averaged statistics

across time, perhaps the second most powerful feature of this

algorithm and the most undervalued one. The average statistics

means that errors due to noise in SOBI components are averaged

across time. Hence, the components are much less sensitive to

random noise in the data than are algorithms that use

instantaneous statistics derived from individual time points. This

is important in the low signal-to-noise environment typical of

EEG data.

Another advantage of SOBI is that it uses only second-order

statistics that can be estimated reliably with significantly fewer

data points than the fourth- and higher-order statistics used in

ICA algorithms. This means that short segments of data are

sufficient for estimating SOBI components. Segments as short as

100 data points worked well with SOBI, whereas the ICA-type

algorithms tested required an order of magnitude more data

points. This becomes importantwhen dealingwith activity whose

statistical properties may vary even moderately over time, in

other words, when the sources are not guaranteed to be

stationary. The fourth important reason for selecting SOBI is

that it can separate Gaussian sources. A major shortcoming of

the ICA algorithms is their failure to separate more than one

Gaussian or near-Gaussian source. Because the actual prob-

ability distributions of EEG sources cannot bemeasured, it is not

known how common Gaussian distributions may be, but

evidence to assume otherwise at this point is lacking. SOBI

allows this issue to be sidestepped altogether. Besides these four

major considerations for selecting SOBI for ocular artifact

correction, there are a number ofminor considerations that come

into play when choosing between BSS algorithms. For example,

some ICA algorithms assume temporal whiteness of the signal

components. In general, the assumptions depend on the

particulars of the individual algorithms and their implementa-

tions; however, a complete review of these is outside the scope of

this article. One shortcoming of SOBI was observed in the

evaluation. SOBI is limited in separating out short-duration

signals such as eyeblinks. In this study, SOBI frequently

integrated the blink into the eye movement component; thus,

the eyeblink component could be extracted with the rest of ocular

activity. In other cases, however, the blink component would

appear, somewhat weakly, in some of the nonocular compo-

nents. Nonetheless, overall, SOBI performance stood apart from

the rest of the algorithms and, based on this, SOBI was chosen

for this procedure.

The discussion above is meant to heighten the awareness that

BSS algorithms are not expected to produce physically mean-

ingful components unless their underlying assumptions present a

good fit to the signal properties being estimated. Thus,

interpretation of BSS results must be carried out with care.

Further improvements to BSS methods for EEG analysis are

clearly desirable. An algorithm that combines, in an averaging

sense, the metrics used by SOBI and by ICA and which to a large

extent overcomes the reviewed shortcomings of the ICA and the

SOBI algorithms while preserving their advantages was devel-

oped in Gorodnitsky and Belouchrani (2001). In the initial

investigation, this algorithm was found to perform better than

the current BSSmethods in identifying ocular artifacts, but it was

not completely validated at the time this report was written. As

more accurate algorithms develop, more direct procedures to

identify artifacts using their points of origination can be

implemented. Further, using advanced classification methods

to identify components containing artifacts is also promising.

REFERENCES

Achim, A., Richer, F., & Saint-Hilaire, J. (1991). Methodological
considerations for the evaluation of spatio-temporal source models.
Electroencephalography and Clinical Neurophysiology, 79, 227–240.

Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E.
(1993). Second-order blind source separation of correlated sources.
Proceedings of the International Conference on Digital Signal
Processing (pp. 346–351). Available at: http://cloe.ucsd.edu/adel/.

Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines,
E. (1997). A blind source separation technique using second-
order statistics. IEEE Transactions on Signal Processing, 45, 434–444.

Berg, P., & Scherg, M. (1991a). Dipole models of eye movements and
blinks. Clinical Neurophysiology, 79, 36–44.

Berg, P., & Scherg, M. (1991b). Dipole modeling of eye activity
and its application to the removal of eye artifacts from the EEG and
MEG. Clinical Physiology and Physiological Measurements, 12(A),
49–54.

Berg, P., & Scherg, M. (1994). A multiple source approach to the
correction of eye artifacts. Electroencephalography and Clinical
Neurophysiology, 90, 229–241.

Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-
Gaussian signals. IEEE Proceedings-F, 140, 362–370.

Delorme, A., Makeig, S., & Sejnowski, T. (2001). Automatic artifact
rejection for EEG data using high-order statistics and independent

component analysis. Proceedings of the Third International ICA
Conference, December 9–12, San Diego. Available at: http://
www.sccn.ucsd.edu/�arno/indexpubli.html.

Gorodnitsky, I. F., & Belouchrani, A. (2001). Joint cumulant and
correlation based signal separation with application to EEG data
analysis. Proceedings of the Third International ICA Conference,
December 9–12, San Diego. Available at: http://cloe.ucsd.edu/BSS-
validation.html.

Gratton, G. (1998). Dealing with artifacts: The EOG contamination of
the event-related brain potential. Behavior Research Methods,
Instruments, & Computers, 30, 44–53.

Hyvarinen, A., & Oja, E. (1997). A fast fixed-point algorithm for
independent component analysis.Neural Computation, 9, 1483–1492.

Joyce, C. A., Gorodnitsky, I., King, J. W., &Kutas, M. (2002). Tracking
eye fixations with electroocular and electroencephalographic record-
ings. Psychophysiology, 39, 607–618.

Joyce, C. A., Gorodnitsky, I. F., Teder-Sälejärvi, W. A., King, J. W., &
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