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In this article, we discuss the relevance of electrophysiological data to the enterprise of
analyzing and understanding the reading process. Specifically, we detail how the event-
related brain potential (ERP) technique (and its magnetic counterpart) can aid in
development of models of visual word recognition. Any viable and accurate account of
reading must take into account the temporal and anatomical constraints imposed by the
fact that reading is a human brain function. We believe that neurophysiological (especially,
although not limited to electrophysiological) data can serve an essential reference in the
development of biologically realistic models of reading. We assess just how well extant
electrophysiological data comport with specific predictions of existing computational
models and offer some suggestions for the kinds of research that can address some of the
remaining open questions.
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1. Introduction

Reading is a remarkable, uniquely human eye–brain activity
during which splotches of ink – constituting words, phrases,
statements, demands, requests, promises, threats, among
others – come to bear meaning in a reader's mind. Large-scale
alphabetization is a contemporary phenomenon. Somewhere
within the past 5000 years or so, the human species learned to
read and thereby radically changed its world. To this day,
psychologists and neuroscientists are actively seeking to
decipher the neuro (and psycho)-computational processes of
normal reading.

Whether or not human brains are genetically pre-wired
for language processing with a language acquisition device,
they are incontrovertibly not pre-wired with a hard-wired,
reading acquisition device. Children learn to read, acquiring
the requisite reading skills via substantial effort, and most
often with explicit instruction. Learning to read thus is
accompanied by functional reorganization of brain systems
that clearly evolved for other functions. Nonetheless, by the
age of five, most children have mastered the basic visual
and language skills necessary for reading, thereafter merely
reinforcing and refining the visual–language interface via
continued exposure and practice (Carr, 2005). In this
acquired neural system for reading, visual information (as
in a printed word) travels from the retina of both eyes to the
cerebral cortex of both hemispheres where it is analyzed at
perceptual and linguistic levels.

To understand how the human brain reads is to under-
stand the essence and order of the neurocognitive computa-
tions by which the different visual inputs to the two eyes
and the two cerebral hemispheres are processed (i.e.,
decoded, encoded, transferred, and integrated). Furthermore,
any realistic account requires an appreciation for the
remarkable speed at which these processes transpire: an
average adult reader can read about three to four words per
second, scanning a text with fast eye movements and
fixating words for durations of 200–300 ms or so. Although
some words may be re-fixated, others are skipped and
perceived only parafoveally (Rayner, 1998). Word recognition
occurs so quickly that it may be easy to forget that it is the
endproduct of a set (series or cascade) of time-consuming
physical processes. More specifically, the neural computa-
tions on which successful reading relies are the result of
metabolic changes that occur at various times in various
brain areas after visual input impinges upon the retina. No
realistic model of reading thus can ignore the fact that
reading is a cognitive skill effortfully learned by areas of the
human brain evolved for other functions. While models of
visual word recognition (VWR) need not specify exactly
which brain areas are involved, they do need to respect the
nature of the specific visual representations involved, their
encapsulation and/or interaction, and the time courses of
their availability and deployment.

Computational models of VWR have become especially
popular among cognitive researchers in the past decade or so
(for excellent reviews, see Grainger and Jacobs, 1998; Randall
et al., 2000). In general, computational models have consider-
able advantages over traditional strictly verbally descriptive
models. First and foremost, computational models (i.e.,
computer programs) are explicit: indeed, they must be fully
specified, if they are to run at all. Second, these specifications
must be internally consistent: different parts of a model
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cannot lead to internal conflicts or produce contradictory
outputs. Third, computational models provide researchers a
means for testing theories via simulations affording compar-
isons with human performance, in terms of internal repre-
sentations, mechanisms and execution, and outputs. Last, but
not least, computational programs can be “lesioned” to
simulate malfunctions resembling those consequent to
human brain damage.

It should go without saying then that empirical data—
behavioral, neuropsychological, and neurophysiological—are
critical for both the developmental and refinement of VWR
models with neurologically plausible architectures and
greater predictive power. Empirical data not only impose
processing and storage constraints on VWR models but also
provide a means for assessing each model's predictions.
Modeling in turn generates new questions and new hypoth-
eses that can then be assessed via a whole gamut of
available technologies that generate new data, and so on.

The benefits of such a dynamic interplay between compu-
tational models and empirical research are clearly evident in
several computational models of VWR based largely on
behavioral measures (reaction time and accuracy). By con-
trast, on the whole, there is no similar give-and-take between
computationalmodelers and electrophysiological researchers,
perhaps because computational models have been agnostic if
not silent regarding the time courses of the various neuro-
physiological processes or the brain areas involved in VWR.
However, as will become patent in the following review, this
state of affairs is in rapid flux; the most recent generation of
VWR models has begun to acknowledge the brain's role in
reading.

After briefly reviewing the most prominent computational
proposals, we discuss how the particular strengths of event-
related brain potential (ERP) measures, as a direct measure of
brain activity with exquisite temporal resolution, might help
to redress some of the acknowledged weaknesses of present-
day VWR models. In this review, we focus on three major
respects in which we believe most VWR models are found
lacking: (1) specification of the time courses of VWR processes,
(2) instantiation of the consequences of the physical–neural
space in which VWR transpires, and (3) recognition of
polysyllabic and polymorphemic words.
Fig. 1 – Basic architecture of a feedforward connectionist
network; activity flows from the input layer to the output
layer, through a hidden layer. Connections weights are
gradually adjusted by mean of a learning algorithm, and
information becomes represented in a distributedway across
the network.
2. Models of visual word recognition and
various reading phenomena explained

The first and perhapsmost influential cognitivemodel of VWR
is Morton's (1969, 1980) logogenmodel. This model is based on
a mental lexicon (mental dictionary) made up of individual
lexical entries (word representations). The logogen model
distinguishes between representations of word meanings
stored in the cognitive system and word forms stored in logo-
gen systems. Separate logogen systems exist for dealing with
auditory and visual inputs and for producing oral outputs
(reading comprehension, listening comprehension, and
speech, respectively). Each unit (logogen) in the logogen
system has an activation threshold. When the amount of
incoming information exceeds the threshold for a particular
word, its meaning becomes available (i.e., is accessed) via the
cognitive system.

Although both the notions of an absolute threshold and a
mental lexicon have been found lacking to some extent (see
below), the logogen model has had an undeniable impact on
models of VWR. Data from neurologically intact as well as
neurologically impaired humans have led to increasingly
more elaborate, empirically more accurate, and as a conse-
quence more readily testable versions of the model (e.g., Ellis
and Young, 1988; Shallice, 1988). This type of model has
obvious advantages for organizing the empirical psycholin-
guistic evidence and for generating qualitative predictions. As
already mentioned, computational models carry some addi-
tional benefits, especially the potential of generating quanti-
tative predictions. Although a detailed review of the field is
beyond the scope of this article, we proceed with a few
representative computational models of VWR together with
examples of how they have simulated specific aspects of
human VWR performance.

2.1. Connectionist models based on learning algorithms

An important class of VWR models, distinctly different from
the logogen model, comprises computational models based
on learning algorithms. Such models are implemented in
artificial networks loosely inspired by the neural architecture
of the brain. Similar to real neural networks, such artificial
networks are made up of a (large) number of highly
interconnected functional processing units. The activity
level of each unit and the strength of each connection
between units are numerically determined, in such a way
that information is represented as the general pattern of
those values. These “neural” networks typically include
three (or more) layers of units (see Fig. 1); an input unit
layer in which the stimuli are represented, an intermediate
or hidden unit layer which is crucial for many learning
algorithms, and an output unit layer, the pattern of activity
of which corresponds to the network response. Initial
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random values are assigned as connection weights between
units, so any input (stimuli) introduced to the net produces a
random output (response). The model is then trained with a
large set of input–output vector pairs, and learning is
achieved by altering the functional organization of the
network. In each training trial, the connection weights
between units are adjusted, bringing the next output closer
to the expected one. As a result, the network's response to
any given input is statistically predictable from previous
input–output associations.

It is important to understand the parallels drawn between
artificial and real neural networks as a general metaphor.
Units in artificial neural networks are not really neurons but
neuron-like with oversimplified features, artificial network
structures usually do not even try to mimic the structure of
real brain tissue, and more importantly, some of the common
learning algorithms do not seem to work according to any
obvious physiological principles. For example, the backpropa-
gation algorithm, which is used inmany connectionistmodels
to adjust weights during training by propagating error
(discrepancy between the desired output of a unit and its
actual output) back to the hidden units, is not biologically
plausible, as such. It is thus commonly assumed that the brain
uses less powerful learning rules in combination with more
neurons as well as more complex patterns of connectivity.
Most connectionist models of VWR are thus more accurately
viewed asmodels of learning and human performance than as
models of the brain or even of brain functions per se. The
challenge of rendering connectionist modelsmore biologically
plausible at an implementational level is a relevant issue in
the field of computational neuroscience that is not directly
addressed here (see Churchland and Sejnowski, 1992; Rolls
and Treves, 1998). Obviously, advances on this front will have
crucial implications for brain models of cognition.

A number of different connectionist models of reading
have been devised sharing the common assumption that
words (or any other unit intervening between the visual input
and meaning) are not locally represented (Seidenberg and
McClelland, 1989; Hinton and Shallice, 1991; Plaut et al., 1996;
Harm and Seidenberg, 2004). According to these, so-called PDP
(Parallel Distributed Processing) models, meaning emerges from
the activity of and connections among highly distributed
representations that could be the neural instantiation of
mental states. On this view, there is no need for a mental
lexicon built of lexical units, as meanings are represented by
weights and connections across a set of units, with each unit
participating in the representations of many different words.
Words are thus not associated with any lists of orthographic,
phonological, grammatical, and semantic features; rather,
they are stimuli that operate directly on internal states
(Elman, 2004).

A classic example of such a connectionist network is
Seidenberg and McClelland's (1989) model of reading aloud
which learns to map distributed orthographic representation
inputs onto distributed phonological representation outputs.
After training with a set of English words and their
pronunciations, S&M's network was able to generate correct
pronunciations for regular as well as irregular words (i.e.,
those with irregular spelling–sound correspondences, like
“sew” or “bowl”). Moreover, assuming a correspondence
between human reaction times and network error scores,
the model was able to mimic two typical phenomena in
normal readers—the word frequency effect (faster naming of
frequent than infrequent words) and the word regularity
effect (faster naming of low-frequency regular than irregular
words). The S&M model, however, was limited in its ability to
generate pronunciations for pseudowords and to discrimi-
nate pseudowords from real words.

Plaut et al. (1996) modified the S&M model to overcome
these limitations: they (1) altered the inputs to be letter
clusters tagged in terms of their position within a word,
thereby encoding contextual information, and added (2)
recurrent connections (feedback connections from the hidden
unit layer to itself, i.e., its input) and (3) attractor structures to
the model. Networks with recurrent connections introduce a
contextual unit layer which receives activity from a unit layer
in one time step (“store” it) and send it back to the same layer
in the next time step. In this way, the network can maintain a
“sense of history” and process sequences that unfold over
time. Attractor structures allow the network to settle into one
of several stable low energy states (attractors), across a
number of processing cycles, depending on the inputs (input
vectors remain active until the output is constant). The
behavior of this type of network is dynamic, thereby adding
a critical temporal dimension to the simulations. Further-
more, as attractors drive partial inputs to more familiar
(stored) representations (i.e., attractors), attractor networks
are better able to “read” noisy, degraded, or partial informa-
tion, as occur in natural environments.

Another useful property of the attractor structures is that
they permit the learning of arbitrary associations (in contrast
to connectionist networks that generalize, giving similar
responses to similar inputs). Such arbitrary associations are
typical of the relationship between orthography (or phonol-
ogy) and semantics, given that words that look alike do not
necessarily correspond to similar concepts. Hinton and
Shallice (1991; see also Plaut and Shallice, 1993) took advan-
tage of this property of attractor networks to build a model
that produces word meanings (a set of semantic features) in
response to spelling patterns. Lesioning such a model (by
removing units or connections) yielded a pattern of errors
resembling those committed by patients with deep dyslexia
(e.g., substituting a semantically related or visually similar
word for the one actually shown). Likewise, after training, this
model responds to degraded stimuli much like normal human
readers do (McLeod et al., 2001).

As already noted, all these networks are essentially
variants of the general model of lexical processing proposed
by Seidenberg and McClelland (1989), according to which
reading results from the cooperation of orthographic, phono-
logical and semantic components. A recent large-scale model
with this triangular structure is detailed in Harm and
Seidenberg (2004). In this model of meaning activation,
distributed semantic representations are activated via an
orthographic pathway and a phonologically mediated path-
way. Unlike inMorton's logogenmodel, these two pathways to
meaning are not independent, but rather cooperate to arrive at
a meaning. Although based on the same computational
principles, each pathway contributes to a different degree
depending on specific word characteristics (e.g., frequency or
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spelling–sound consistency) and context (e.g., priming effects)
because the two are trained to resolve different mappings. As
in humans, orthographic-to-semantic mappings require more
time to be learned initially but this ultimately becomes the
faster pathway. In contrast, the orthographic–phonological–
semantic pathway predominates in the early stages of training
but in the end it is relatively slower because it involves more
intermediate steps.

Arguably, the most noteworthy virtue of the PDP type
models is their parsimony. Modelers start with very few
assumptions about network structure. Indeed, at first glance,
these connectionist models may seem to be free of theoretical
bias. Denying the existence of local representations, however,
is a strong assumption, and this has been the principal
criticism against this kind of VWR model. Perhaps for this
reason, some computational modelers have opted instead for
network structures based on local representations.

2.2. Localist connectionist models

Localist connectionist models of VWR differ from connec-
tionist models described thus far in that they start with
localist rather than distributed representations. Unlike in
distributed representations, where the same units may be
involved in representing different kinds of information, in
localist models, different kinds of information are encoded in
different units or group of units. Connectionist models that
incorporate localist representations also take as a given the
traditional view that reading involves the cooperation of
different subsystems, routes, and levels of processing; these
subcomponents are then further specified according to
theoretical considerations (Fig. 2).

Although distributed and localist modeling constitute two
very different approaches to the simulation of cognitive
processes, they are not necessarily mutually exclusive.
Models based on local representations, for example, do
represent distributed knowledge, albeit at a different level
(than the localist representations). Likewise, models based
on distributed representations usually include units that can
Fig. 2 – An example network with localist representations;
activation can spread interactively between units (localist
representations) through excitatory (arrows) or inhibitory
(black circles) connections which are hand-wired according
to theoretical considerations.
be considered as local representations, but at a lower level
(e.g., the semantic features that encode distributed word
meanings)1. In addition, localist models can incorporate
learning algorithms that modify the strengths of the pre-
specified connections, while some types of connectionist
networks can learn localist representations (see Page, 2000
for a further discussion and a defense of localist approaches).

In fact, the first connectionist model of letter and word
perception, the Interactive Activation and Competition (IAC)
model (McClelland and Rumelhart, 1981; Rumelhart and
McClelland, 1982), is a localist model whose architecture was
hand-wired rather than learned. It includes units at three
representational levels: a visual feature level (lines in
different orientations), a letter level (letters of the alphabet
in each position within the word), and an orthographic word
level (word units). Activation spreads in this model inter-
actively because it flows across levels in parallel through
bidirectional inhibitory or excitatory connections. Unlike in
the logogen model in which activation is discrete, with
logogens activated only after some threshold activation level
is reached, activation in these connectionist networks flows
continuously or in a cascade-like fashion. The cornerstone of
such interactive models is the inhibition hypothesis, according
to which activation of a specific symbolic unit at any level
(e.g., words) is the outcome of a competition among local
representations with interconnections at the same level.
Initially, activated word units compete via their lateral
inhibitory connections while they send excitatory feedback
to their corresponding letters. This feedback mechanism
explains, for example, why letters are usually detected faster
when they appear within a word than within a nonword
letter string.

A further extension of the IAC model principles can be
found in the Multiple Read-Out Model (MROM) of Grainger and
Jacobs (1996); the MROM is amodel of orthographic processing
developed to simulate human performance in word identifi-
cation and lexical decision tasks. On this model, a correct
response to a word stimulus is given when activation of a
word representation reaches a critical level. In the lexical
decision task, for example, a “yes” response is given when
some word representation exceeds some specified criterion
and a “no” response is given if no representation is sufficiently
activated after some (pre)specified time. The model also
introduces a “fast guess” mechanism that also can lead to a
“yes” response when the total activation in the orthographic
lexicon is high, even before any specific word representation
has reached threshold criterion. In other words, lexical
decisions can be made even before lexical identification is
fully complete. The model admirably reproduces a broad
range of behavioral data and the “fast guess” mechanism is
especially useful in simulating the orthographic neighborhood
size effect,2 and its pattern of interactions with other lexical
1 However, they are still considered distributed models, viewed
from the perspective of the primary process being modeled.
2 The orthographic neighborhood size of a word is usually

defined as the number of words that share all but one letter with
that word. Low-frequency words with many orthographic neigh-
bors are on average recognized faster than those with fewer
neighbors.
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variables in words and pseudowords (e.g., the frequency of
orthographic neighbors). A more recent version of the model
incorporates phonological processing as well; when letters
activate word units in the orthographic lexicon, they also
activate a parallel set of nodes in a phonological lexicon
(Jacobs et al., 1998).

Coltheart et al. (1993, 2001) have elaborated a more general
computational model of VWR and reading aloud, based on the
same philosophy, called theDual Route Cascade (DRC)model. In
line with other classical reading models, the DRC model has
two different input and output lexicons. The DRC assumes two
distinct processing routes from print to sound—one lexical or
purely orthographic and the other nonlexical. In this model,
visual feature units activate letter units and, in the lexical
route, letters activate words in the orthographic lexicon,
which then activate representations in the phonological
lexicon. A distinctive characteristic of the DRC model is that
it incorporates a set of grapheme-to-phoneme correspon-
dence rules into the nonlexical route. These rules convert
letter strings into phoneme strings serially. Although it has
not yet been implemented, the model will eventually also
house a semantic system and thus possess a semantically
mediated route as well. The DRC model has been quite
successful in simulating important behavioral phenomena in
normal readers, in both pronunciation (reading pseudowords
and phonologically irregular words and producing the
regularity by frequency interaction) and lexical decision
tasks (where the three response mechanisms of the MROM
are incorporated). Moreover, the DRC adequately models
certain reading phenomena in aphasic individuals, including
the dissociation between surface and phonological dyslexia.3

Pseudowords, for instance, are pronounced by means of
grapheme–phoneme correspondence rules using the nonlex-
ical route, whereas previously learned irregular words are
read out by means of the lexical route. Regular words can use
both routes. Surface and phonological dyslexia are simulated
by damage (i.e., turning down the activation parameters) to
the lexical and nonlexical routes, respectively.

2.3. Summary

In this section, we described some representative examples of
two major classes of computational models of VWR: those
with distributed representations and learning mechanisms
and those with local representations and hand-wired archi-
tectures. These two classes of models not only differ in
implementation but reflect two very different philosophies
about modeling in cognitive science.

PDPmodels stress the role of learning.Word recognition, in
this computational framework, is an instantiation of a
continuous and dynamic learning process that depends on
the interaction between the new input, the current state of the
system, and its previous history. Information provided by
previous encounters with any given linguistic information is
3 Surface dyslexia is characterized by relatively intact reading of
regular words and pseudowords, together with poor reading of
exception or phonologically irregular words (resulting in regular-
ization errors). Phonological dyslexia, in contrast, is characterized
by poor reading of nonwords with relatively intact word reading.
crucial in shaping the system's response. The statistical
regularities of the language and its use are therefore impor-
tant determinants of the system's behavior. Neural networks
of this type have been able to simulate a variety of behavioral
observations using homogeneous computational principles.
Triangular models based on Seidenberg and McClelland (1989)
seminar proposal, for example, are able to correctly pronounce
both words and pseudowords and to simulate naming
latencies thereof (e.g., Plaut et al., 1996), as well as to offer
viable explanations for frequency and regularity effects, and
the impact of these on the division of labor between the
orthographic–semantic and phonologically mediated path-
ways. These networks also can mimic characteristic error
patterns associated with phonological processing of homo-
phones (words that look different but sound the same). These
types of models likewise can account for certain semantic
effects in word reading such as the imageability effect (low-
frequency words with higher imageability are named faster
than those words with lower imageability) and semantic
priming effects when two words are presented sequentially
(Harm and Seidenberg, 2004). Last but not least, these models
can be “lesioned” to reproduce responses of certain aphasic
patients or tweaked to parallel the performance of normal
readers encountering partial or noisy information (Hinton and
Shallice, 1991; McLeod et al., 2001).

Models based on localist representations, by comparison,
have typically been presented as computational instantiations
of classical verbally descriptive models, especially the logogen
model (Grainger and Jacobs, 1996; Coltheart et al., 2001). The
functional architecture of these models including their basic
units, levels, and connections is pre-wired. This not only
makes the structure and dynamics of the model more
transparent but also allows for direct testing of specific
hypotheses drawn from the empirical data. Although learning
and the statistical regularities within the language under
study also have prominent roles in such models, they tend to
focus more on the interaction between stable subsystems
operating under different processing principles. Like PDP
models, these models have successfully simulated an
impressive range of behavioral effects. For example, the latest
version of the DRC model mimics all the naming effects
previously simulated by Plaut and collaborators (1996), as well
as homophone processing and priming. Likewise, both the
DRC and MROM models can simulate the main findings of
lexical decision task performance: faster responses to words
than to pesudowords, the frequency effect, interaction
between frequency and size or frequency of orthographic
neighborhood, as well as homophony effects.

Despite their different theoretical underpinnings and
mechanistic implementations, both classes of models of
VWR cannot only adequately simulate some reading phe-
nomena but in many cases, the same reading phenomena.
Modeling success therefore in no way guarantees which
model is accurate; the brain may simply perform the
computations in a different way. One crucial test of any
computational model is just how well it can simulate a large
variety of different effects (in size and timing) including those
that have yet to be discovered. Together with biological
plausibility, flexibility to adapt to an ever-growing body of
new empirical evidence is key.
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In summary, each class of computationalmodels discussed
herein was developed to account for a circumscribed set of
reading phenomena and we have every expectation that
future developments will extend their scope to encompass
others. For example, there is no obvious practical or theore-
tical reason why the Harm and Seidenberg (2004) model
cannot simulate response latencies in naming and lexical
decision tasks or why the DRC model cannot incorporate
semantic processes and model semantic effects in reading
(Coltheart et al., 2001). Likewise, certain behavioral phenom-
ena that currently elude one or the other type of model may
ultimately be achieved either via relatively minor modifica-
tions to the existing models (Ziegler et al., 2001; Zevin and
Seidenberg, 2006) or via novel combinations of computational
principles, e.g., connectionist models that are able to learn
localist representations (Bowers, 2002). These potential
improvements notwithstanding, in the next section, we turn
our attention to what are arguably greater challenges for all
VWR models, the solutions to which we maintain would lead
to qualitative reformulations of extantmodels, and in so doing
a deeper understanding of the reading process.
3. Limitations of current visual word
recognition models

3.1. Normal visual word recognition, retinas, and cerebral
hemispheres

With a few notable exceptions, incorporating the physiologi-
cal and anatomical milieu within which reading computa-
tions take place has not been a priority for computational
modelers. While this may have been an effective strategy in
the initial stages of theoretical and computational develop-
ment, it is unlikely to be the wisest tack now just as VWR
models are becoming increasingly more successful in
accounting for reading phenomena. Explaining the last 2–5%
of the variance so often offers the most difficult challenge for
any model that it would seem to be an especially good
criterion for adjudicating among alternative proposals all of
which can seem to account for a large portion of the variance,
albeit in fundamentally different ways.

Arguably, the most salient anatomical characteristic of the
brain is its separation into two hemispheres. Bi-hemispheric
neural networks have been used to test different proposals
about hemispheric specialization and interhemispheric trans-
fer in language processing (Reggia and Levitan, 2003; Weems
and Reggia, 2004). These models are composed of input and
output layers connected via two different association layers
(representing the hemispheres) with connections between
them. Reggia and Levitan (2003) developed a bi-hemispheric
network of lexical identification (associating graphemes to
lexical representations) to examine how hemispheric specia-
lization might emerge at least in this type of task. They found
that a processing advantage for one of the networks can arise
due to its larger size, greater excitability, or a faster learning
rate. In a related study (Weems and Reggia, 2004), they used a
similar model of lexical decisions to test various hypotheses
regarding interhemispheric communication. Simulations sup-
ported a model in which communication spreads in both
directions and the two hemispheres cooperate to generate
outputs compared to a model in which information spread is
mostly unidirectional or in which the two hemispheres act
independently. Despite the limited scope of these simulations,
they have been useful in testing specific hypotheses about the
functional organization of the brain and thus could prove to be
of even greater benefit to large-scale models of VWR.

Of the few modelers who have introduced some biological
constraints into their computational models of VWR, special
attention has been devoted to the implications of the fact that
visual information is projected to the two cerebral hemi-
spheres, each with its own representations and processing
capabilities. It is commonly assumed that receptors in the
center of the fovea transmit signals to both hemispheres,
creating visual field overlap around fixation. Some research-
ers, however, argue instead primarily from neuropsychologi-
cal data for a split fovea in humans; that is, a clean bisection of
the fovea, with information from each visual hemifield sent to
the contralateral hemisphere (Brysbaert, 1994; Leff, 2004). On
this view, when a word is presented in central vision, letters
falling to the left of fixation are projected to the right
hemisphere (RH), whereas letters falling to the right of fixation
are projected to the left hemisphere (LH). A few recent models
of reading have incorporated this proposal (Shillcock et al.,
2000; Whitney, 2001).

The SERIOL model, for example, is a 5-layered model
(retina, feature, letter, bigram,word) that takes letter strings as
inputs and connects them to lexical units (Whitney, 2001,
2004). The retinal level reproduces the distributions of the
different cones in a real human retina via an acuity gradient,
with activation decreasing with distance from fixation. The
feature level honors the split-fovea principle in its representa-
tion of suborthographic features, such that the LH receives
information from the right visual field (RVF) and vice versa. At
this level, the retinal acuity gradient is transformed into a
location gradient, with weights decreasing as a function of a
letter's ordinal position within a word from first (most
activated) to last (least). At the subsequent letter level, this
location gradient is converted into a firing pattern, funneling
parallel activation into serial activation. At the bigram level,
ordered pairs of letters are recognized, with the relative time
of bigram firing being the basic unit for lexical access at the
word level. Within this model, information in the RH is
transferred to the LH at the letter level, in line with the
proposal that there exists a specific (word form) area in the left
cerebral hemisphere where orthographic information is
initially analyzed (McCandliss et al., 2003).

Shillcock and collaborators (Shillcock et al., 2000; Shillcock
and Monaghan, 2001) likewise have implemented a bi-
hemispheric neural network in which the two halves of a
word are processed differently after a foveal split. Their
network has two input layers, one corresponding to each
visual field; these are in turn connected to two corresponding
interconnected hidden unit layer “hemispheres”. Shillcock et
al. argue that the asymmetrical distribution of information
within words would naturally lead the two model “hemi-
spheres” (and presumably in humans as well) to different
optimal solutions based on the different partial (half) word
inputs they receive. More specifically, faced with the need to
quickly analyze the high density of information coming from



4 Words beginning with a high-frequency syllable are associated
with longer latencies than words starting with a low-frequency
syllable in lexical decision tasks.
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word initial segments, the network's “RH” may settle on a
coarse-coding scheme such that information from bigrams or
trigrams (letters pairs or triplets) is jointly processed. By
contrast, the lower density of word-final information may
allow the network's “LH” to settle on a finer-coding scheme in
which units represent individual letter positions. As semantic
priming simulations show that training does indeed lead the
model to develop more loosely related semantic connections
in the “RH” layer than in the “LH” layer. One important
consequence of these two different processing/representation
strategies is that the “LH” layer responds rather accurately (at
least more so than the “RH”) to a given word input, whereas
the “RH” layer shows some activation even to items that are
orthographically and/or semantically close to the input word
(Monaghan et al., 2004).

While the split-fovea hypothesis is controversial and thus
in need of additional empirical support, networks embodying
this hypothesis, nonetheless, provide a clear example of how
computational models can contribute to a debate about the
anatomical bases of reading not only in showing the feasibility
of a proposal but in generating specific predictions that can be
assessed via electrophysiological measures.

3.2. Orthographic systems across languages and
sublexical units

3.2.1. Cross-linguistic studies of reading
For the most part, empirical work on and thus the
computational models of VWR have been based on lan-
guages with alphabetic orthographies—mainly English.
There is thus a relative paucity of VWR models dealing
with non-alphabetic systems (e.g., syllabic Japanese Kana or
logographic Chinese). A notable exception is the Lexical
Constituency Model (LCM), which has been used to simulate
orthographic, phonological, and semantic priming effects on
naming in Chinese (Perfetti et al., 2005). The LCM includes
both local and distributed representations, fixed connection
weights, and activation that spreads via thresholded func-
tions. In addition to a level of radical units (Chinese
orthographic units), LCM contains phonological, ortho-
graphic, and semantic levels. While phonology is not used
to identify words, it is considered part of the word to be
identified. Critical for present purposes, the phonological
unit's contribution to a word's identity (in addition to the
contributions from orthography and meaning) is considered
universal. This feature of LCM thus can explain phonological
reading effects even in languages, like Chinese, where, due
to the preponderance of homophones, phonological infor-
mation does not unambiguously map onto meaning. At the
same time, the developers of LCM are explicit in their belief
that the specific nature(s) of the orthographic unit(s) for any
given writing system will naturally influence the particular
basic processes involved in VWR for that language. We
likewise believe that other characteristics that distinguish
one language family from another such as the left-to-right
scanning or the absence of an explicit graphic representation
of vowels in Semitic languages will impact the relative
weightings of different information types during VWR, if not
the actual information used. Even more subtle differences,
such as the degree of consistency between orthography and
phonology (e.g., low in English versus high in Spanish), also
must play some non-trivial role in VWR and thus in models
thereof. It should go without saying that comparative
experimental studies across different orthographic scripts
and languages and computational VWR models that can
handle the different patterns across cross-linguistic data will
be crucial to a full understanding of the structure and
dynamics of VWR.

3.2.2. Most words are not monosyllabic
Presumably, for the sake of simplicity, the vast majority of
VWR models (all of those reviewed thus far) have dealt
exclusively with monosyllabic words, even though in many
languages, polysyllabic words are far more numerous. This
limitation has been acknowledged by the authors of
contemporary models of VWR (e.g., Coltheart et al., 2001;
Harm and Seidenberg, 2004), but only a few researchers have
attempted to remedy the situation. Ans et al. (1998), for
example, developed a connectionist feedforward network –
the Multiple-Trace Memory (MTM) model—that simulates the
reading of polysyllabic French words. MTM has two distinct
word processing modes operating in series. Initially, all
words (and pseudowords) are analyzed via a global route.
However, whenever the global route is stymied, for example,
by a pseudoword or a low-frequency word, an analytic mode
based on word syllable segments takes over. More precisely,
letter string inputs are analyzed in order, starting with the
largest unit that the system recognizes as familiar (usually a
syllable) and so on; in this way, the network performs
automatic syllabic segmentation. While MTM offers an
adequate starting point for polysyllabic word processing, a
similar endeavor with languages like English, in which
words have less clear syllabic boundaries, will undoubtedly
raise a whole host of additional challenges (Rastle and
Coltheart, 2000).

In order to capture the syllabic frequency effect reported for
some languages,4 it has been proposed that interactive-
activation models should incorporate an intermediate level
made up of syllabic units that compete via lateral inhibitory
mechanisms (Carreiras et al., 1993). It is not obvious to us,
however, how current versions of these models would be
affected by such modification and if, for example, they could
still account for some of the previously simulated ortho-
graphic effects, such as the neighborhood frequency effect
(see Conrad and Jacobs, 2004 for a further discussion). Since
PDPmodels are able to simulate frequency effects of units that
are not locally represented (e.g., the lexical frequency effect), it
is an open question whether syllable frequency effects could
emerge in them from the interaction of orthographic and
phonological information.

3.2.3. Not all words are monomorphemic
A related problem, but with different implications, faces
models with morphemes as sublexical units. In principle,
morphemes can mediate between lower levels (orthographic



106 B R A I N R E S E A R C H R E V I E W S 5 3 ( 2 0 0 7 ) 9 8 – 1 2 3
and/or phonological) and semantic representations, so the
different units could be hierarchically integrated in an
interactive-activation type model (Taft, 1994). Unlike ortho-
graphic and phonological units, however, morphemic units
also can serve as semantic units in their own right. However,
morphemes need not necessarily be made up of some other
subunits such as syllables given that in many languages there
is no correlation between morphological borders and syllabic
borders (e.g., the monosyllabic word “CATS” is made up of two
morphemes (CAT-S) and the monomorphemic word “WIN-
DOW” is made up of two syllables “WIN-DOW”). Integrating
both syllabic and morphemic units into a unified model of
VWR thus could prove to be a thorny problem.

Seidenberg and Gonnerman (2000) proposed an alternative
PDP model based on the assumption that a word's morpho-
logical structure is epiphenomenal, emerging from the con-
fluence of orthographic, phonological, and semantic factors.
Likewise, some learning or neuropsychological effects related
to inflectional morphology (like the past tense generation in
English verbs) have been simulated without any explicit
morphological level of representation (Plunkett and Juola,
1999; Joanisse and Seidenberg, 1999). However, no model of
reading that has been implemented to date is able to
adequately capture the mounting evidence that morphology
does play some role in VWR. Clearly, extending the current
generation of computational models—admittedly quite suc-
cessful in dealing with monosyllabic words—to handle poly-
syllabic and polymorphemic words as readily is one of the
major challenges that contemporary modelers of VWR face.

3.3. Timing is critical

A critical variable that will ultimately need to be an intrinsic
part of any viable computational models of VWR is the time
course with which different information types become
available and are used until a letter string is recognized (or
not) as a word. Of particular importance, especially from a
modeling perspective, is whether the different information
types are processed simultaneously and in parallel or in a
particular serial or cascaded order sequence. Although none
of the models described thus far has as of yet fully mimicked
the dynamics of the word recognition process, the temporal
dimension of current VWR models has been singled out as in
need of improvement (e.g., Harm and Seidenberg, 2004), and a
few tentative speculations have been tendered (Whitney,
2001). Some models have successfully simulated naming
latencies (e.g., Plaut et al., 1996; Coltheart et al., 2001) or
predicted entire response distribution functions (Grainger
and Jacobs, 1996), but those are still measures of the total
time that the whole process consumes to reach an optimal
solution. Processing cycles or settling timings have not yet
been correlated with partial computations to account for
process dynamics, mainly due to the lack of an adequate
quantitative description of the temporal dimension, which
obviously is an essential prerequisite. We believe that this is
an arena where electrophysiological data (event-related brain
potentials or ERPs, in particular) can make important,
arguably unique, contributions to the study of VWR pro-
cesses. More specifically, electrophysiological data can help
to delineate the various subprocesses involved in VWR by
identifying qualitatively different processes (how many there
are, what they are, and their relation to proposed physical or
psychological distinctions), their relative time course(s) of
(dis)engagement—including onset, offset, duration, and rela-
tive order, and their susceptibility to context.
4. Electrophysiology and mental chronometry
of visual word recognition

Electrophysiological measures, in particular, ERPs recorded
from the human scalp have proven to be especially useful
tools in the study of various aspects of human cognition,
including language comprehension (see reviews in Rugg and
Coles, 1995; Münte et al., 2000; Rösler, 2005; Kutas and
Federmeier, in press; Kutas et al., in press). ERPs are voltage
fluctuations over time (usually 1–2 seconds) triggered by some
sensory, motor, or cognitive event. As any given ERP is quite
small relative to the background noise in the electroencepha-
logram, researchers typically compute a mean ERP by aver-
aging across multiple segments of electroencephalographic
recordings presumably time-locked to physically or concep-
tually similar events. As the average ERP at the scalp at any
moment is a reflection of the sum of post-synaptic potentials
at that moment (primarily from pyramidal cells in the
neocortex), it provides a reasonable estimate of the neural
activity supporting the neocortical neural processes that
unfold as an event is analyzed. The ERP has an exquisite
temporal resolution spanning the range from milliseconds to
seconds—the very range during which reading processes
occur. ERPs thus are now routinely combined with the well-
known paradigms of experimental psychology to track the
neural processes involved in stimulus evaluation, decision-
making, implicit and explicit memory, response preparation,
selection, and execution, among other processes.

Recognizing the printed word, for example, requires a
series of mental operations (just which and in what order
remain contentious issues), many if not all of which are
reflected in the ERP triggered by word onset not only during
theword's actual appearance but for hundreds ofmilliseconds
thereafter. ERPs thus are an exquisite tool for tracking the
mental operations of reading, particularly those that occur
between the initial appearance of sensory input and the
apprehension or construction of its meaning (see Fig. 3 for a
representative visual ERP to a word).

4.1. N400 component

The N400 is the most intensively studied ERP-language-
related component, although it is unequivocally not lan-
guage-specific. The N400 is a negative-going component
starting around 200 or so ms and peaking around 400ms
after the onset presentation of a word or any other potentially
meaningful stimulus (Kutas and Hillyard, 1980; Kutas and Van
Petten, 1994; Kutas and Federmeier, 2000). N400 amplitude to
words within sentences is a linear function of how predictable
thosewords are based on the sentence context up to that point
(where predictability is measured by offline cloze probability
measures); the more predictable a word, the smaller the N400
elicited (Kutas and Hillyard, 1984; Van Petten and Kutas, 1990).



Fig. 3 – Visual event-related potential (grand average, N=18, average age=20 years old) elicited by the second of a pair of words
randomly presented for 200 ms 2° lateral to fixation in the left or right visual field following a centrally presented prime word
that was either semantically related or semantically unrelated to it (prime to target onset to onset interval=500 ms). Each
recording is referred to the offline average of left and right mastoids. Negative plotted up. Note the contralateral posterior N1
component and the large N400 to semantically unrelated words (data reported in Coulson et al., 2005).
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A similar reduction in N400 amplitude characterizes the ERP to
the second of two successive words occurring as a pair or in a
running list when they are semantically or associatively
related (e.g., Bentin et al., 1985) or identical (Rugg, 1990).

Under certain task instructions, the amplitude of the ERP
during the N400 region is also sensitive to phonological
(Radeau et al., 1998) and morphosyntactic relations (Barber
and Carreiras, 2003), suggesting that these different codes are
available and come together (perhaps inevitably and criti-
cally) to affect ongoing processing between 200 and 500 ms
post-word onset, at least in normal young adults. Accord-
ingly, it has been suggested that the N400 is a good index of
the ease of accessing information within long-term semantic
memory and its integration with the local context (Kutas and
Federmeier, 2000).

N400s in response to written or spoken words can vary in
onset latency, duration, and relative amplitude distribution
across the scalp, as a function of sensory modality of input,
among other factors. Although the N400 is in some sense
modality-independent, its timing and continued sensitivity to
input modality taken together suggest that the neural
processes reflected in N400 activity might be the ongoing,
cumulative process by which incoming information cues (and
thus makes available) information stored in long-term
semantic memory for meaning activation and construction.
As such, N400 amplitude has been successfully used as an
indirect probe of the effect of orthographic information on
meaning activation. A reduction in N400 amplitude, for
example, has been seenwhen aword (e.g., chair) was preceded
by a pseudoword (e.g., wable) derived from a word semanti-
cally related to the target word (Deacon et al., 2004). This result
shows that even nonword letter combinations partially
activate semantic representation(s) if they resemble a real
word prime to some extent and that N400 amplitude is
sensitive to such activation.

Holcomb and colleagues (2002) also reported a direct
relation between orthographic neighborhood size and N400
amplitude. They took this relation to reflect more widespread
activation of representations in semantic memory following
words with more as opposed to fewer orthographic neighbors
(note: the mechanism of activation was unspecified). More
recently, Braun et al. (2006) examined the relationship
between ERP amplitudes and lexical activity levels in a lexical
decision task using stimuli chosen according to their degree of
activity in MROM (Grainger and Jacobs, 1996). Specifically, the
overall lexical activity of each word and pseudoword stimulus
was defined as the average summed lexical activation across
the first seven cycles of processing. A clear advantage of this
approach is that, rather than selecting a single variable such
as orthographic neighborhood size to index lexical activation,
the model-generated values are a non-linear combination of
various lexical variables (e.g., the frequencies of the ortho-
graphic neighbors and bigram or trigram frequencies). ERP
results showed an initial distinction (i.e., amplitude differ-
ences) between words and pseudowords around 300 to 390ms
followed between 450 and 550 ms (i.e., modulation of N400
amplitude) by a sensitivity to lexical activation levels but only
for pseudowords. The authors suggest that, in line with
MROM's decision mechanisms, the early categorical distinc-
tion between words and pseudowords reflects an initial
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identification process for “yes or word” responses, while the
subsequent graded effects of lexical activity are consistent
with a temporal deadline based on global activation that leads
to “no or pseudoword” responses.

These kinds of studies demonstrate just how the N400 can
be combined with predictions of a computational model to
probe meaning activation by units smaller than a word (i.e.,
sublexical units). Such results open up the possibility for
exploring potential activation by a large bevy of variables
including but not limited to the order or position of letters
within a word, bigrams, syllables, morphemes, etc. Data of
this type could prove especially crucial, for example, in
helping to adjudicate between contrasting proposals of letter
encoding, e.g.; claims for letter position encoding (Coltheart
et al., 1993; McClelland and Rumelhart, 1981) versus claims
for contextual encoding via letter clusters such as bigrams or
trigrams (Seidenberg and McClelland, 1989) or some hybrid
position (Whitney, 2001). According to the SERIOL model
(Whitney, 2001), for example, initial serial processing of
letters and letter positions is followed by the activation of
open bigrams (ordered but not necessarily consecutive letter
pairs). Letter positions are encoded via temporal firing
patterns, where the time of firing depends on 40 Hz
oscillatory cycles (each letter position corresponds to a
successive 25 ms subcycle).

Precise predictions of this sort from brain data necessitate
a relatively detailed timeline of the different neurocomputa-
tional events that transpire from stimulus onset up to the
N400, starting with the initial processes of letter encoding. ERP
correlates of the effects of the bigram and trigram frequency
have been reported as early as 100 ms after word presentation
onset (Hauk et al., 2006a), showing the sensitivity of the scalp
ERP not only to lexical and semantic processing but also to
early word-form information. An electrophysiological delinea-
tion of the neural processes of VWR can in turn be used to
weigh in as evidence for or against various computational
VWR models. In particular, a timeline of ERP sensitivities can
speak to what variables are and are not important for which
particular process or stage of processing, when they have their
effects, and their degree of independence or interactivity.

4.2. Electromagnetic estimates of the time course of
orthographic processing

4.2.1. Linguistic versus non-linguistic stimuli
One strategy for identifying visual processes specifically
involved in letter encoding has been to compare the time
course of word processing directly with that of other
perceptually and conceptually similar but non-letter or word
stimuli and look for the point and location of initial ERP
divergence.

Schendan et al. (1998), for instance, examined ERPs
elicited by various word-like stimuli (words, letters strings,
and pseudo-fonts), object-like stimuli (objects and pseudo-
objects), and faces. Over occipital brain areas, ERPs to word-
like and object-like stimuli diverged around 90 ms or so after
stimulus onset, presumably reflecting a low-level analysis of
the physical characteristics of the visual input. By around
125 ms, the P150 component over parietal brain areas
distinguished well-learned categories of visual patterns
(such as words and faces) from other less well-learned
visual inputs. In a similar vein, ERPs elicited by orthographic
stimuli (words, pseudo-words, and consonant strings) and
non-orthographic stimuli (alphanumeric symbols and strings
of forms) reliably diverged at around 140 ms and showed a
characteristic lateral asymmetry; over posterior temporal
and occipital regions, orthographic stimuli were associated
with an N150 that was larger over the left than right
hemisphere whereas non-orthographic stimuli showed a
reverse asymmetry. Intracranial recordings likewise have
revealed selective responses to letters in inferior occipito-
temporal region between 150 and 200 ms as neurons in a
nearby area selectively responded to faces (Allison et al.,
1994; Nobre et al., 1994). Electrophysiological data thus
indicate that the brain reacts to well-learned (versus novel)
input patterns at around 125–200 ms post-stimulus onset (if
not before) by first analyzing the physical features of the
input. Letter strings, like faces, constitute a type of rapidly
detected perceptual category, presumably due to the mas-
sive exposure to (the regularities of) orthographic stimuli
that the average adult reader experiences across the course
of a lifetime. The absence of any difference in the electro-
physiological response to words and illegal words at this
point (prior to 200 ms) implies that these early processes do
not involve any meaning activation.

Similar inferences have been drawn from visual processing
studies using magnetoencephalography (MEG). MEG is a
method in which weak magnetic fields, generated by current
flow in the brain, are noninvasively measured using SQUID
(superconducting quantum interference device) detectors out-
side the skull. MEG and EEG both derive from synchronized
neuronal activity in the brain and have a time resolution in the
millisecond range.However, due to thedifferential sensitivity of
electric and magnetic fields to the skull and the geometric
orientation of intracranial current flow, the two methods offer
complementary information about brain activity; with MEG
recording, it is primarily the activity of the cortex in the sulci
rather than gyri (in which the pyramidal cells are oriented
perpendicular to the skull) that are detected (for a review, see
Hämäläinen et al., 1993). MEG studies of VWR have differen-
tiated a so-called Type I activity pattern around 100 ms,
reflecting low-level analysis of visual features and a Type II
activity pattern around 150 ms (greater for letter than symbol
strings), originating in the inferior occipito-temporal cortex and
reflecting object-level processing (Tarkiainen et al., 1999, 2002).

4.2.2. Lexicality and word frequency
An alternative strategy for demarcating the initial perceptual
processes involved in letter encoding has been to compare the
ERP responses to various types of orthographic stimuli (with-
out any additional non-linguistic contrasts for comparison).
These types of studies have generally reported a word–
nonword divergence in the ERP significantly earlier than the
300–350 ms difference that is characteristic of investigations
that include non-orthographic stimuli. These early ERP
differences of wordness (lexicality) range from 100 to 200 ms
(100 ms: Sereno et al., 1998; 125 ms: Compton et al., 1991;
150 ms: Proverbio et al., 2004; 192 ms: Dehaene, 1995).

Attempts to further delineate the time course of word
processing have been based on systematic manipulations of
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variables known to influence word processing such as word
frequency. Such investigations are potentially of great rele-
vance to reading modelers as several VWR models assume
that frequent words are recognized as a whole without any
intermediate analysis whereas infrequent words undergo at
least some intermediate analysis. This assumption implies
not only a qualitative difference in the processing of frequent
and infrequent words but also that this frequency-based
processing difference occurs relatively early in the word
recognition process. ERP data are clear in showing that an
eliciting word's frequency of usage influences neural proces-
sing at multiple time points during the course of VWR. Word
frequency, for example, modulates the ERP between 300 and
500 ms (N400); with all other factors held constant, N400
amplitude is an inverse function of a word's eliciting
frequency (e.g., Bentin et al., 1985; Rugg, 1990; Barber et al.,
2004). These N400 frequency effects however can be over-
ridden by semantic context: large frequency effects on the
N400, seen for open class words early in a sentence, are absent
for such words by sentence end (Van Petten and Kutas, 1990).
Dambacher et al. (2006) further observed that the effect of
semantic context (e.g., predictability estimated from offline
cloze probabilities) was larger for low- than high-frequency
open class words. Word frequency effects were seen as early
as 130 or so ms both in ERP (132–192 ms: Sereno et al., 1998,
2003; 135–175 ms: Proverbio et al., 2004; 150–190 ms: Hauk and
Pulvermüller, 2004; 140–200 ms: Dambacher et al., 2006) and
MEG investigations (Assadollahi and Pulvermüller, 2001).
Assadollahi and Pulvermüller (2003) also reported that the
latency of the frequency effect interacted with word length,
ranging between 150 ms for short words and 240 ms for long
words, suggesting that formal and lexical variable interactions
might explain part of the latency variability observed across
studies. An intermediate ERP component over left frontal sites
with a peak latency that varies inversely with written word
frequency, dubbed the Frequency Sensitive Negativity (FSN),
was described by King and Kutas (1998). In their sample of
words from a series of isolated sentences, the FSN peaked
around 280 ms for high-frequency words and around 335ms
for low-frequencywords (see also Osterhout et al., 1997;Münte
et al., 2001; although not all researchers have been successful
in isolating an FSN, Brown et al., 1999). A similar sensitivity to
lexical frequency was described for the latency of the M350
component5 (Embick et al., 2001). In summary, it seems that
frequency impacts word processing at multiple time points,
relatively early, late, as well as at points in between,
suggesting that several word processes are sensitive to
experience. To date, there is no strong evidence for qualitative
differences in the processing of high- versus low-frequency
words, as predicted by some VWR models, except fairly late
(only for closed class words, Münte et al., 2001; or after
repetition, Rugg, 1990). At the same time, no ERP studies have
thus far capitalized on these reported sensitivities to fre-
quency to test specific VWR proposals, such as whether there
is any sign in the ERP that low-frequency words are of
necessity analyzed at a sublexical level as they cannot be
5 Detection of event-related responses in single individuals is
easier in MEG than in EEG, which makes this method especially
suitable for the detection of small latency differences.
recognized globally (Coltheart et al., 2001; Ans et al., 1998) or
whether low-frequency words do in fact place greater
demands on a slow, phonologically mediated pathway
(Harm and Seidenberg, 2004).

4.2.3. Conclusion
Electrophysiological investigations of linguistic versus non-
linguistic stimuli, different kinds of letter strings (from
consonant strings to real words), and of the lexical variables
such as frequency and length all suggest that, when the brain
distinguishes between these various inputs depends, it seems
not just on the nature of the input but also on the task
demands. In broad stroke, designswhich include orthographic
as well as non-orthographic stimuli tend to find a later latency
of divergence than designs limited to letter strings. This
suggests the possibility that human brains might adopt a
reading set or mode (based on prior materials or other
expectations) that predisposes the word processing system
to process incoming stimuli as orthographic, thereby speeding
up (at least some) VWR processes.

4.3. Tracking phonological processes

In addition to the availability and use of various orthographic
codes, VWR models need to be informed by the availability
and use of other types of lexical information during the
recognition process. As already mentioned, word phonology
has been hypothesized to be one such important source of
information for VWR (e.g., Frost, 1998). Consistent with this
proposal, semantically incongruous words that were homo-
phonic with the expected ending of contextually constrained
sentences were found to elicit smaller N400s (indicating
priming) than nonhomophonic anomalous endings (Newman
and Connolly, 2004). Experiments with Chinese homophones
also have revealed phonological priming effects in the N400
time window, supporting the proposition that phonological
information is considered even in a language where its role
could reasonably be questioned (Liu et al., 2003).

The first ERP divergence between nonpronounceable non-
words and pseudowords reportedly appears between 250 and
350 ms post-letter string onset (Bentin et al., 1999) and has
been variously linked to the accessing of phonological
representations (Proverbio et al., 2004) or to grapheme–
phoneme conversion mechanisms (Simon et al., 2004). Simi-
larly, the M250 and M350 components of event-related MEGs
reveal sensitivities to phonotactic probability (frequency of
occurrence of a sound and sequence of sounds in words)
(Pylkkänen et al., 2002).

Phonological processing also has been investigated more
directly by recordings taken as participants render rhyming
judgments about visually presented word pairs. Rhyming
effects have been observed for both the N200 and N400
components (Rugg and Barrett, 1987; Valdés-Sosa et al., 1993).
Kramer and Donchin (1987), for example, found a greater
negativity peaking at 350 ms for non-rhyming relative to
rhyming word pairs. Based on a comparison of orthographic
and phonological conditions, they concluded that a phono-
logical mismatch can be detected ∼260 ms after word onset.
A similar latency has been reported for the onset of the N400
visual rhyming effect, being very consistent across different



6 During normal reading, words are presumed to be perceived
parafoveally before being directly fixated. This preview can make
available at least some information about the upcoming word
(e.g., orthographic information) and thereby speed up its sub-
sequent identification by at least in 20 ms or so (Rayner, 1998). In
most ERP experiments, sentences are presented one word at a
time at the same location. This procedure circumvents the
artifacts due to eye movements of various sorts during natural
reading, but at the same time deprives the system of such
preview benefits, likely delaying some of the computations
involved in word identification.
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groups of children and adults (Grossi et al., 2001). Bentin et al.
(1999) likewise observed modulation of an N320 component
by non-rhyming words, as well as a distinction between
pronounceable and unpronounceable letters strings in an
N350 component. As these effects were contingent on there
being a phonological task, they could either reflect phonolo-
gical processing per se or semantic activation resulting from
phonological processing. All told, however, such data indi-
cate that there is phonological mediation between orthogra-
phy and semantics, at least under certain conditions.
Moreover, considering that orthographic and lexical effects
in the ERP have tended to appear earlier than these
phonological effects, the data pattern is consistent with the
hypothesis that the phonological pathway is slower than the
more direct orthography-to-semantics pathway. This proces-
sing speed difference, however, is equally explicable by
models in which grapheme–phoneme conversion unfolds
serially (Coltheart et al., 2001) as by connectionist PDP
models (Harm and Seidenberg, 2004).

4.4. Word class distinctions

In addition to orthographic and phonological information,
words are associated with other types of information such as
word class that also might be considered in early stages of
VWR, especially when words appear within sentences. Word
category violations (also referred to as phrase structure
violations), for example, elicit an enhanced left anterior
negativity between 150 and 300 ms, referred to as LAN,
whose latency presumably is a function of the time at which
word category information is available (e.g., Neville et al., 1991;
Friederici, 1995; Hahne and Friederici, 1999). An early frontal
negativity with a left hemisphere (N280) focus was initially
proposed to distinguish closed class or function words
(determiners, articles, conjunctions, prepositions) from open
class or content words (nouns, verbs, adjectives, adverbs;
Neville et al., 1992; Nobre and McCarthy, 1994). King and Kutas
(1998) however showed that theN280wasnot specific to closed
class words in that it could be subsumed by latency variability
in the same negativity—an LPN, which peaks early for closed
class words and later for open class words (see also Osterhout
et al., 1997;Münte et al., 2001; Brown et al., 1999; ter Keurs et al.,
2002). Pulvermüller et al. (1995) proposed that differences in
laterality, rather than in amplitude or latency, best distinguish
open from closed word classes at around 200ms, the same
latency atwhich amplitude differences betweenGerman verbs
and nouns were observed (Preissl et al., 1995; Pulvermüller et
al., 1999; see also a similar result in Dutch: Kellenbach et al.,
2002). Federmeier et al. (2000) also described word class
differences for nouns versus verbs in English. They presented
unambiguous nouns, unambiguous verbs, and class-ambig-
uous words that could be a noun or a verb (e.g., “drink”) in
grammatically unambiguous contexts. Class-ambiguous
words differed from the other items 100 ms after word onset,
even when sentential context rendered them unambiguous.
Moreover, at around 200ms, unambiguous verbs elicited a left-
lateralized anterior positivity. Taken together, such results
suggest that some information about a word's grammatical
category may become available relatively early in the VWR
process, although the possibility that these word class effects
are secondary to various semantic and/or syntactic processes
has not yet been ruled out. Additionally, one study described
an ERP response to gender agreement violations appearing at
around 100–150 ms post-word onset, showing that, at least in
Hebrew,morphosyntactic gender information also is available
quite early (Deutsch and Bentin, 2001). In other languages (e.g.,
German or Spanish), the equivalent effect has been seen later,
post-300ms (Gunter et al., 2000; Barber and Carreiras, 2005).
Meaning activation and integration processes thusmay be the
outcome of more than initial orthographic decoding (as
determined by familiarity and other lexical factors), including
the co-activation of phonological and perhaps even some
morphosyntactic word features.

4.5. Conclusions

All of these data have yet to be wholly integrated into an
explicit timeline of visual word recognition. Nonetheless,
there have been partial attempts to make order of the extant
behavioral and brain data on VWR. Sereno and Rayner (2003;
see also Sereno et al., 1998), for example, claim that some level
of lexical identification must occur between 60 and 150 ms
after word fixation. Their argument is based on evidence of (1)
top–down influences on oculomotor control (eye movements)
during reading which they take to support a certain level of
lexical identification before the eyes leave a word to initiate a
new saccade, (2) an average fixation duration during reading
around 200–250 ms,6 and (3) estimates of initial peripheral
transmission and late oculomotor programming and execu-
tion times. Their claim finds some support in the few ERP
experiments that have revealed lexical frequency effects in
this time window (e.g., Sereno et al., 1998, 2003). This
inference, however, rests on the questionable, albeit not
uncommon, assumption that word frequency effects on the
ERP necessarily indicate lexical access. At present, it is unclear
why more ERP studies have failed to show such early effects
reliably. Hauk et al. (2006b) would attribute the inconsistencies
to the confounding of many lexical factors in previous studies.
Alongwith some late effects, they too found some early effects
of different lexical features (obtained from a Principal
Components Analysis of corpus-based information) on ERPs
to written words in a lexical decision task using a regression
analysis. More specifically, they describe effects of word
length and letter N-gram frequency (a measure highly
correlated with bigram and trigram frequency) around 90 ms,
aneffect of lexical frequency around110ms, andeffects of both
morpho-semantic coherence (the degree to which words
sharing a root morpheme are semantically related to each
other) and lexicality (in a factorial analysis) around 160 ms.
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These variables also produced topographically similar effects
in parts of thewaveformpost 200ms. Hauk et al.maintain that
this timeline is most consistent with an interactive cascade
model in which word-form and lexical representations are
accessed consecutively, albeit with substantial processing
overlap. The similarity of the ERP effects observed in associa-
tion with these different lexical variables in the later time
windows is argued to reflect parallel processing of post-lexical
information, in contrast to the earlier effects associated with
lexical access and lexical selection processes.

Taken together, these electrophysiological studies of VWR
point to parallel activations of different kinds of word-related
information, all available soon after the initial orthographic
analysis of a written word (Fig. 4). When different types of
visual stimuli are presented, ERPs associated to well-learned
versus novel stimuli differ from each other around 100 ms
after presentation onset, discriminating orthographic from
non-orthographic stimuli ∼50 ms later. Similarly, a few
studies using only orthographic stimuli and linguistic tasks
have reported wordness or lexicality effects (word versus
nonwords or/and pseudowords) and word frequency effects in
this same (early) time range (although the impact of these
variables has been more consistently reported at later time
points, especially post-300 ms). Phonological information
seems to become available a little later between 200 and 350
ms, while the availability of grammatical class and other
morphosyntactic information seems to depend at least in part
Fig. 4 – A schematic representation of the timing (in ms) of the r
strings (often although not alwayswords) to a host of independen
collected using different physical stimulus parameters, tasks, and
neural processing, a single table of this sort does ERP investigatio
some of the effects at the same latency present with different am
timeline highlighting (darker shade) the latencies of reliable ERP
also presenting those (lighter shade) that have been reported on
underscores the flexibility, adaptability, and context sensitivity o
interpreted with the accompanying text.
on how this information is represented within a language.
Under certain circumstances (e.g., languages), some lexico-
semantic information might be at least partially activated
within 150–250 ms of word onset, after which other informa-
tion associatedwith thatword seems to accumulate gradually.
All these information types are apparently integrated between
300 and 500 ms. Finally, ERP data clearly indicate that the
temporal course of VWR processes remains highly flexible and
responsive to top–down factors (such as local sentence
context and task demands).

This general description of VWR as a fast although
extended, cumulative, and adaptable process accords well
with brain models of visual perception more generally, as
described next. While the different visual pathways are
loosely hierarchically organized (with higher visual areas
coding more complex representations than lower visual
areas), the significant coincidence of activation times across
the many different striate and extrastriate areas from the
outset indicates that numerous computations are being
performed in distinct, but highly interconnected areas in
parallel (Bullier and Nowak, 1995). Newer models of visual
perception stress both the extended temporal course and
cumulative nature of context-sensitive, constructive visual
processing, with perceptual representations becoming pro-
gressively detailed and elaborated over time, via not only local
activity but substantial feedforward, feedback, and lateral
connections (e.g., Rousselet et al., 2004, Lamme, 2003). While
esponsivity of the amplitude of visual ERP elicited by letter
t variables based on the published literature. These datawere
languages; as these factors, among others, directly influence
ns of VWR amajor disservice. It is also important to note that
plitude distributions at the scalp. Nonetheless, we offer this

effects which have been replicated in several laboratories but
ly once or twice. Even a cursory review of the literature
f VWR processes. Accordingly, this table can only be
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the primary visual cortex may at first glance seem like a
bottleneck for the entry of visual information into the brain,
beyond V1 visual information spreads quickly through multi-
ple parallel pathways, each with its own representations,
processes, and functions. In this way, as visually presented
linguistic stimuli are being recognized, mental representa-
tions progressively emerge from the confluence of different
information types and top–down influences. This general
picture poses a daunting challenge to computational models
of VWR—namely, incorporating the temporal constraints
imposed by the empirical data together with the modulatory
mechanisms that allow the VWR system to be sensitive to
context and task demands for extended time epochs.
7 Were the origin of an electric field inside of a sphere (namely,
the head) and the characteristic conductivity of the medium (e.g.,
brain, cerebrospinal fluid, skull and scalp) known, it would be
possible to calculate its effect over the surface. However, the
calculation of the origin of electrical activity measured at the
surface of a sphere (inverse problem) has no unique solution,
even with an infinite number of noise-free measurements. It is
thus necessary to assume specific models of the sources in order
to estimate approximate solutions.
8 Magnetic signals are less distorted than electrical fields when

they propagate through the skull and other tissues although they
fall off more rapidly.
5. Electrophysiology and lateralization
constraints on visual word recognition

A central issue for any cognitive model is to determine just
how the anatomy of the brain constrains the functional
processes it supports. One major cortical division that is
unquestionably very relevant for VWR is the brain's separa-
tion into two, albeit highly interconnected hemispheres,
which differ both anatomically and physiologically. VWR is
thus the product of the cooperation of two somewhat similar
but nonetheless different anatomical structures with different
ways of processing much, if not all, of the same visual
information. Neuropsychological and neuroimaging data
have unequivocally demonstrated the superiority of the left
hemisphere for many linguistic tasks, but there is also
empirical support for right hemisphere contributions to
language processing (e.g., Beeman and Chiarello, 1998). More-
over, at least some right hemispheres seem capable of word
recognition, even if they are not normally responsible for or
perhaps even normally involved in VWR in the intact brain
(Zaidel, 2002). The specific roles of the two cerebral hemi-
spheres as well as detailed specifications of just when and
how they interact would seem to be crucial issues for any
computational model of language comprehension in general
and VWR in particular.

The presence of two hemisphereswith different processing
capabilities has largely been ignored by cognitive and compu-
tational models of VWR presumably under the assumption
that, during reading, the visual information that arrives in the
right hemisphere is almost immediately transferred to the left
where all relevant word recognition processes are then
conducted. However, neither the quick transfer of verbal
information nor the superiority of the left hemisphere for
some, or even all, aspects of the word recognition process
necessarily nullifies parallel processing of printed words by
the right hemisphere. The various split-fovea computational
models that incorporate some anatomical constraints of the
visual system however differ in the role they assign to each
hemisphere. SERIOL, for example, assumes an immediate
transfer of low level orthographic (Whitney, 2001). Shillcok
and collaborators (2000), on the other hand, give the right
hemisphere partial autonomy in processing lexical informa-
tion. The exquisite temporal resolution of ERPs makes them
especially suitable for investigating the time course of
interhemispheric transfer and, in combination with other
techniques, for specifying just what kinds of functions each
hemisphere abets.

5.1. Orthography

Some of the early orthographic effects previously described
appear laterally asymmetric at the scalp, most often being
larger over left hemisphere than homologous right hemi-
sphere sites. Although the relationship between the super-
ficial topography of electrical fields and their neural
generators is not straightforward given the inverse problem,7

these kinds of ERP asymmetries have been taken in combina-
tion with other findings to reflect left hemisphere specializa-
tion for orthographic processing. Nobre and McCarthy (1994),
for example, observed a larger N150 component in the left
(relative to right) hemisphere in response to written words
(see also Schendan et al., 1998). The N170 effect associated
with orthographic (but not with non-orthographic) processing
was similarly found to be larger over the left (relative to the
right) posterior–temporal/occipital regions (Bentin et al., 1999;
Simon et al., 2004). Additionally, the differences between
orthographic and non-orthographic stimuli surface 70ms
earlier over left than right electrode recording sites, allowing
for the possibility of interhemispheric transfer.

Similar early effects inMEG recordings, with their relatively
better spatial resolution,8 were localized to the left inferior
temporo-occipital cortex (Salmelin et al., 1996; Kuriki et al.,
1998; Tarkiainen et al., 1999, 2002). This localization is
consistent with the proposed visual word form area (McCan-
dliss et al., 2003), in which several neuroimaging studies have
observed significant activations during letter processing
(although its exact location and functional significance
remain controversial, see for example Price and Devlin,
2003). Cohen et al. (2000), for example, recorded fMRI activity
following words presented to the two visual half fields in
individuals with a partial commissurotomy of the posterior
portion of the corpus callosum as well as from brain intact
controls. The Visual Word Form Area in the middle portion of
the left fusiform gyrus was activated in the control partici-
pants regardless of which field was stimulated whereas in the
posterior split-brain patients it was activated only with right
visual field (left hemisphere) presentation. These activations
were linked to ERP activity at around 180–200 ms over left
posterior sites also present only with right visual field
presentations in the patient group. Cohen et al. concluded
that visual information is initially processed in temporo-
occipital areas contralateral to the stimulated hemifield but is
subsequently transferred to the Visual Word Form area in the
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left hemisphere—an area specialized for letter string proces-
sing. Applying a source analysis to their ERP data, Hauk and
collaborators (2006a,b) likewise observed involvement of the
occipital region in both hemispheres; at 100 ms post-word
onset, an effect of word length was localized in right occipital
areas and an N-gram frequency effect was localized around
the Visual Word Form area in the left hemisphere.

These results are generally in accord with models that
implicitly assume that visual information initially arriving in
the right hemisphere is quickly transferred to the left hemi-
sphere through the posterior portion of corpus callosum. More
specifically, they support the computational architecture of
SERIOL, in which suborthographic features of the left and right
side of aword are initially processed in parallel in the right and
left hemispheres but are soon thereafter integrated in the left
hemisphere at a sublexical level (Whitney, 2001).

5.2. Phonology

The linguistic superiority of the left hemisphere does not seem
to be restricted to early orthographic analyses. Phonological
ERP effects also exhibit left lateralization at the scalp (Bentin et
al., 1999; Simon et al., 2004; Proverbio et al., 2004), paralleling
lateralized fMRI activation patterns during phonological tasks
(Binder and Price, 2001). Taken together, these data suggest a
model in which the left hemisphere is highly specialized for
the sequential analysis of sublexical orthographic and pho-
nological representations. The relative involvement of the two
cerebral hemispheres in the direct processing and recognition
of larger word units remains an open question (Ellis, 2004).

5.3. Semantics

The cerebral hemispheres also have been found to differ in
their sensitivities to various types of associative and semantic
relationships. Accuracy and reaction time data from visual
half field studies, for example, have led to the proposal that
the left hemisphere is especially sensitive to close lexical–
semantic relationships (e.g., cat–dog) whereas the right hemi-
sphere is more sensitive to a wider net of looser semantic
associations (e.g., goat–dog; e.g., Chiarello, 1998). Such results
are consistent with split-fovea models implying different
functional organizations of semantic associations and mean-
ing representations in the two hemispheres based on the
different natures of the partial information initially available
to each (Monaghan et al., 2004).

Coulson et al. (2005) examined ERPs in a priming paradigm
in which the word prime first appeared in central vision and
the target appeared shortly thereafter (500 ms) randomly 2°
lateral to fixation in the left or right visual field (see Fig. 3).
ERPs to semantically associated words elicited a greater
positivity (following the early sensory potentials) relative to
unassociated words with presentation to either visual field.
Although a slight delay might have been predicted with left
visual field presentations if the input were transferred to the
left hemisphere via the callosum, the onset latencies of the
priming effects in the two visual fields were statistically
indistinguishable. Presentation to the two hemifields, how-
ever, did seem to unfold with a somewhat different temporal
course: for targets presented in the right visual field, the
priming effect was larger earlier (300–500 ms) than in the left
visual field (600–800 ms). If replicable, these hemispheric
differences in the degree of semantic activation over time are
consistent with parallel activations and integrations of word
meanings in both hemispheres, albeit likely with different
processing algorithms.

5.3.1. Conclusions
In summary, it behooves computational modelers of VWR to
attend to the processing consequences of at least certain
anatomical constraints and electrophysiological researchers
to provide empirical data (and ensuing inferences about
functional constraints) for model testing. At minimum, these
should include facts and consequences of the lateral organi-
zation of the visual system, and the relative autonomy
interaction between the two hemispheres, each with its own
representations and processes.
6. Electrophysiological analyses of the visual
recognition of complex words

Visual word recognition is often conceptualized as a process
whereby a specific set of ordered orthographic units is
functionally linked to a unique conceptual representation.
As language is typically construed as a combinatorial system,
a critical issue has been identifying the fundamental building
blocks that are to be combined. Although a lively debate
regarding the basic functional units of language continues to
rage among linguists, most cognitive models confer words a
central role (Jackendoff, 2002). In the case of languages with
alphabetic orthographies, printed words are represented by
letter combinations. Letters, or letters clusters like bigrams,
thus can be considered orthographic units (Grainger and
Whitney, 2004). Other codes, like graphemes (usually under-
stood as the written version of phonemes; Henderson, 1985) or
sub-syllabic segments of onset, nucleus, and coda (initial
consonant cluster, vowel, and final consonant cluster, respec-
tively, e.g., “W–O–RD”; Shallice et al., 1983) also have been put
forward as perceptual units. Obviously, the choice of basic
units (initial and otherwise) has important implications for a
model's performance. Accordingly, solid empirical evidence
for the perceptual unit that is to serve as the starting point for
any model of VWR is a must.

As previously noted, several computational models have a
phonological level inbetween the orthographic and meaning
levels, although the specific phonological implementations
vary considerably in detail (Harm and Seidenberg, 2004;
Coltheart et al., 2001). ERP data attest to the sensitivity of
semantic analysis to phonological information during word
reading and thus offer up results for testing different models
and theoretical proposals. Demonstrating the psychological
reality of any particular sublexical unit during reading
requires evidence that words can be decomposed into these
units during VWR and in turn that these units provide access
to and facilitate the integration of meanings.

The bulk of computational models of VWR deal only with
short (monosyllabic) words, which can be successfully mod-
eled without any intermediate representations. The question
of whether or not, and, if so, which, additional intermediate
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units may be needed to explain VWR more generally becomes
readily apparent whenmodelsmust accommodate longer and
more complex multi-syllabic or polymorphemic words, the
most frequent staple ofmost natural languages. Both syllables
and morphemes have been hypothesized to be such inter-
mediary sublexical units (Taft and Forster, 1976). Syllables are
typically meaningless units of orthographic and phonological
information; by contrast, morphemes are semantic units
carrying both semantic and morpho-syntactic information
(e.g., the morpheme “–S” in the word “CATS” gives semantic
information about quantity; by contrast, the syllable “-DOW”
in the word “WINDOW” only refers to its phonology). Within
most PDP models, these intermediate levels of representation
are not built in as a separate representation as they are
considered emergent properties that arise from regularities in
the input language as analyzed by the network (brain
surrogate). The repeated co-occurrence of specific letter
sequences in a particular language, for example, presumably
makes the processor sensitive to certain orthographic and
phonologic patterns. And, since the transition probabilities for
letter sequences that coincide with morphologic or syllabic
boundaries tend to be on average lower than transition
probabilities among letters internal to a syllabic or morpho-
logical unit, the probability of bigram frequencies might
account for various effects that have been attributed to
intermediary sublexical units (Seidenberg, 1987).

6.1. Syllables

There is considerable empirical support primarily from
reaction time data but also to some extent from electro-
physiological data for the claim that syllables may be a
critical interface between sublexical orthography and sub-
lexical phonology during VWR (see Carreiras and Grainger,
2004 for review of behavioral evidence). Barber et al. (2004)
investigated the combined effects of initial syllable frequency
and word frequency on lexical decision for written Spanish
words (a language with clear syllable boundaries). The
probabilities of bigram transitions, orthographic neighbor-
hood size, and syllable–morpheme overlap were controlled
and thus eliminated as potential confounds. The N400
frequency effect – smaller N400 amplitudes for high- than
low-frequency words – was replicated. At the same time, a
reversed syllable frequency effect was observed: negative
amplitudes were larger for words beginning with high than
low-frequency syllables. Moreover, the syllable frequency
effect was apparent earlier (150–200 ms) than the word
frequency effect (300–350 ms), suggesting different time
courses for these two variables during VWR. Syllable
frequency effects of this type are assumed to reflect early
activation of syllables which in turn activate a cadre of
lexical candidates that share a common first syllable, which
thereafter compete in an interactive activation fashion (e.g.,
McClelland and Rumelhart, 1981). The ERP effect thus could
reflect either these activation–inhibition processes or
attempts by the system to integrate any of those partially
activated meanings into the context. This syllable frequency
ERP effect was replicated in German (a language with a less
clear syllabic structure); the first syllable effect at around
180ms preceded the lexicality effect (words versus pseudo-
words) at around 350 ms by about 170 ms (Hutzler et al.,
2004).

In a different paradigm, decisions were made about
Spanish words and pseudowords made up of letters written
in two different colors; for some words, the color boundary
was coincident with the word's syllabic boundary (match)
whereas for others the color–syllable boundaries were mis-
aligned (mismatch). The ERP data showed color–syllable
congruency effects between 180 and 260 ms for both pseudo-
words and low-frequency words, but not for high-frequency
words (Carreiras et al., 2005). The absence of a syllable effect
for high-frequency words accords well with the assumptions
of the MTM model of polysyllabic word recognition (Ans et al.,
1998), according to which only low-frequency words and
pseudowords are decomposed in syllables if and when global
word recognition processes fail. The MTM model, however,
cannot simulate the inhibitory effects of high-frequency
syllables reported in Barber et al. (2004) because it does not
include a competition mechanism of lateral inhibition among
syllable representations. This would seem to require, for
instance, that a localist connectionist network include an
intermediate level of representation. On the other hand, these
data do not rule out the possibility that activation of word
cohorts sharing the same syllable arises from orthographic
redundancy, which could explain the inhibitory effect. In that
case, a connectionist network without local representations
could account for the frequency syllable effect. Quite reason-
ably, computationalmodelers are loath tomodify theirmodels
of VWR without indisputable evidence for an actual rather
than merely emergent level of syllabic representations. Such
work would benefit greatly from extension to languages with
deep orthographies and explicit investigations of the ortho-
graphic or phonological nature of the proposed syllabic
representations.

6.2. Morphemes

Similar issues arise with regard to morphological decom-
position during VWR. Words that are composed of more than
one morpheme are likely to be represented neurally not just
by single whole-word units but also decomposed into their
constituent morphemes. Stems and affixes, for example,
could be separately stored, which some researchers then
believe would necessitate a set of combinatorial rules during
word recognition. On such a view, morphemes also could
serve as access points to a word representation during VWR.
And, indeed, different dual-route models have been proposed
to explain recognition of morphologically regular and irre-
gular words. On such models, irregular words are listed
within the mental lexicon in their full form, whereas only the
stems of regular words are stored (Schreuder and Baayen,
1995; Pinker and Ullman, 2002). By contrast, many connec-
tionist models do not build in any a priori role for word
morphology since both morphemes and rules are presumed
to become implicitly represented in the connection weights
during network training (Rumelhart and McClelland, 1986;
McClelland and Patterson, 2002).

Differences between the ERPs to morphosyntactic viola-
tions on regular and irregular words have fairly consistently
been found. Regularization of German nouns with irregular
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plural forms, for example, was associated with a left anterior
negativity starting at 200 ms, whereas incorrect number
inflections of regular words produced a more centrally
distributed effect (Weyerts et al., 1997). A similar dissociation
was observed when violations produced by incorrectly
inflected regular and irregular verbs were compared, in
German (Penke et al., 1997) and in different Romance
languages (Gross et al., 1998; Rodríguez-Fornells et al., 2001).
These data have been taken to support dual processmodels in
which irregular words are stored as a whole but regular words
are decomposed into their stems and affixes. Whereas the
data are consistent with this interpretation, they do not
necessarily warrant it.

The representational structure ofmorphologically complex
words also has been investigated. In one experiment, regular
and irregular German participles were either presented twice
(repetition priming) or were preceded by their infinitival form
(morphological priming). For regular participles, both types of
primes produced similar ERP priming effects; by contrast,
irregular participles showed no morphological priming in the
ERP (Weyerts et al., 1996). In a comparable study in English,
controlling for formal priming, verb stems were preceded
either by their past tense form or by the past tense form of an
unrelated verb (Münte et al., 1999). Only regular pairs (e.g.,
start–started) were associated with a significant reduction in
N400 amplitude; irregular verbs (e.g., think–thought) showed
no such morphological priming. A similar pattern of results
was obtained in Spanish, a language with a different verb
inflectional morphology (Rodríguez-Fornells et al., 2002).
Although the ERP data suggest differential treatment of
regular and irregular word forms at a neural level, consistent
with a dual process account, they do not yet constitute strong
evidence against connectionist models which show that such
processing differences between regular and irregular word
forms could emerge in principle from different contributions
(weightings) of the phonological and semantic components in
a single-mechanism network (Seidenberg and Gonnerman,
2000).

In a different type of priming paradigm, a morphological
characteristic of some Spanish words, namely, grammatical
gender was used to investigate whether words are decom-
posed into a stem and a gender affix. In Spanish, certain noun
pairs can be distinguished by their gender markings, even
though they are neither semantically nor morphologically
related (e.g., rata–rato: rat–moment). These so-called stem
homographs – despite being two different morphemes –
have identical orthographic and phonologic representations.
Compared to unrelated words, both morphologically related
word pairs (NIÑA–niño: boy–girl) and stem homographs
(RATA–rato) showed a similar reduction in N400 amplitude
between 250 and 450 ms followed by a greater negativity for
stem homographs relative to morphologically related words
(Barber et al., 2002). Subsequent experiments ruled out strictly
orthographic similarity or rhyme mismatching as the sole
causes of the priming effects for the stem homographs
(Domínguez et al., 2004). Instead, the initial similarity between
morphological and stem homographic ERP priming effects
was taken to reflect the application of the same segmentation
rule to the same item in both cases. The subsequent negativity
was hypothesized to reflect the morphological parsing failure
resulting from this procedure for stemhomographs, i.e., a type
“of lexical garden-path effect”.

Two studies in Englishwith isolatedwords add to the claim
that written words are decomposed into their morphemes
duringword recognition. In a lexical decision task, pronounce-
able pseudowords containing no English morphemes (e.g.,
flermuf) were found to elicit large N400s in contrast to
pseudowords formed by combining a prefix and a relatively
non-productive bound stem (e.g., in-ceive), which produced a
smaller N400 that was indistinguishable from the response to
real words (McKinnon et al., 2003). Finally, an MEG experiment
reported an inhibitory effect of morphological family size
(number of morphological derivates associated with a root) on
the peak latency of the M350 component. This delay in
response to words with larger morphological families was
taken to reflect competition among all the forms derived from
the same root, all of which would have been activated initially
(Pylkkänen et al., 2004). The authors argued for a cohort model
of morphological activation similar to that invoked to account
for phonologic effects (Pylkkänen et al., 2002) and the ERP
syllable neighborhood effect (Barber et al., 2004).

6.3. Conclusions

In summary, during visual word recognition, the brain
extracts various types of information presumed to be char-
acterizing word representations. To that end, the visual (or
word) processing system could segment words into a variety
of sublexical units, associated with different information
types (phonological, syllabic, morphological). The question
is does it, and if so, into which units and under what
circumstances. Various subunits could trigger the initial ac-
tivation of many potential meanings followed by competi-
tion and inhibition leading to the unique activation of the
correct representation of a given printed word within a
specific context. Models based on distributed representations
have shown that many of the behavioral phenomena that
support such a vision of VWR could naturally emerge from
structure in the input—regularities of various sorts (letter
combinations, phonological, syllabic, and morphological),
even if these information types are not explicitly (or a priori)
represented as distinct sublexical level representations. This
controversy raises a challenge for both computational mode-
lers and electrophysiological researchers: how best to simu-
late word recognition phenomena that would seem to require
various intermediate orthographic and semantic representa-
tions and how best to refine experimental designs and
stimulus controls in order to eliminate possible confounds
due to superficial word stimulus characteristics.

Ultimately, the resolution of questions about what types
of information are used, in what combinations, when, and
how at a mechanistic level in the service of VWR will require
comparative studies of reading in different languages,
including those with different orthographies. It is not
unreasonable to expect that the brain has arrived at slightly
different solutions for the different instantiations of the
“same” reading problem (e.g., decoding letters versus picto-
grams). Indeed, when word recognition processes were
examined in a group of Chinese–English bilinguals, the
pattern of ERPs to various word contrasts in the two
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languages shared some general commonalities but were also
characterized by some between language differences in
latency, amplitude, and scalp distribution of the relevant
components and effects (Liu and Perfetti, 2003). Moreover,
across-language differences are unlikely to be limited to
differences in the physical characteristics of the stimuli in the
languages being compared. However, even if they were, the
processing of other types of word information might depend,
at least in part, on language-specific features. Thus, some of
the reported effects for various intermediate level units could
well be language-specific. For example, it has been suggested
that, in languages (like French) where there is an inconsistent
mapping between orthography and phonology, only sublex-
ical output phonology and not sublexical input phonology
may be structured syllabically, with the main functional
phonological unit in recognition process being the phoneme
(Ferrand et al., 1996). Clearly, investigations of the different
functional units of VWR must consider different languages.

A case in point is Ziegler and Goswami's (2005) integration
of findings from the literatures on phonological development,
reading acquisition, and dyslexia to develop a theoretical
framework of reading that cuts across languages (the psycho-
linguistic grain size theory of reading). Their primary claim is
that the size of the fundamental reading unit (i.e., graphemes,
phonemes, syllables, onsets/rimes, etc.) within any given
language is determined by the phonological characteristics of
that language because reading development is grounded in
phonological awareness. They propose that the degree of
consistency in the mapping between phonology and ortho-
graphy within a language is the main determinant of the
nature (specifically, grain size) of lexical representations as
well as accompanying reading strategies and the nature of
the associated reading problems (dyslexia) within that
particular language. Moreover, since skilled reading depends
on reading development, the relative importance of (or
reliance on) different sublexical representations across lan-
guages is also likely to vary. This is an excellent example of
how a close collaboration between experimental psychology
and modeling combined with cross-linguistic research can
lead to integrative models that may help to reveal universal
principles of reading and their specific implementations
across languages.
7. Interplay between electrophysiology and
computational models

7.1. Mutual constraints in principle and in practice

We are not the first to suggest the mutual benefits that
computational modelers and cognitive neuroscientists might
derive from joining forces to analyze VWR. Indeed, in their
open commentary on an early overview of neuroimaging data
(Posner and Raichle, 1995), Jacobs and Carr (1995) wrote of two
important ways in which functional neuroimaging can be
used to constrain computational models of cognition: (1) by
providing information about the anatomical loci of different
subprocesses and hence system decomposability and (2) by
delineating the temporal dynamics of the cognitive process
(es) under investigation. Electrophysiological data have pro-
ven useful to VWR investigations in both these regards. Even
with their limited spatial resolution, ERP data have placed
constraints on the anatomical organization of all reading
models by revealing, for example, that the temporal course of
word processing and the use of sentential context in the two
hemispheres differ (Coulson et al., 2005). ERP measures also
have been combined with other techniques to provide
evidence on localization of various VWR processes (Cohen et
al., 2000). The prospects not only for more but for more
spatially precise contributions of this sort seem especially
good given the recent proliferation of analytic tools for
localizing the sources of electromagnetic signals and for
combining data across different imaging modalities (EEG,
MEG, fMRI, Transcranial Magnetic Stimulation or TMS). By its
nature, electrophysiological data are even better suited to
contribute important information about the timing of reading
process, and we have reviewed a growing body of relevant ERP
data along with some specific proposals (Sereno and Rayner,
2003; Hauk et al., 2006a,b). The extant computational models
are, in principle, able to simulate process dynamics and event
sequences, for example, in activation levels of different
processing cycles or in settling times in the case of attractor
networks. This would then seem to be an especially promising
avenue for future explorations.

In addition to these two ways in which neuroimaging
studies can help to constrain computational models, we have
highlighted some qualitative principles of neural processing
derived from the electrophysiological data that we believe also
should be considered in any realistic model of VWR; e.g.,
evidence of massive interactivity and the fast confluence of
information during the VWR process, as well as the flexibility
of the reading system and its dependency on context and
previous states. We noted some of the conclusions that have
been derived from these principles, such as a clear lack of
support for the traditional distinction between lexical and
post-lexical processing (Coulson and Federmeier, in press).

Jacobs and Carr (1995) also speculated about how computa-
tional models might contribute to cognitive neuroscience, for
example, by generating specific predictions such as about
levels of brain activation. In Section 4.1, we described two clear
examples of this (Holcomb et al., 2002; Braun et al., 2006).
Cross-fertilization between cognitive electrophysiology and
computational modeling thus has already proven feasible in
both directions. There are many levels at which one approach
may influence thinking and/or research in the other, ranging
from very general and qualitative to very specific and
quantitative: in some cases, results in one field may only
loosely constrain the other, in other cases, the mutual
interplay may be very explicit and direct, as in the generation
of new and testable hypotheses, or in simulation of specific
electrophysiological effects. Although we cannot foresee all
the fruits of such a union, we believe that all the available
signs portend sufficient success to make it worth the time and
effort.

Dehaene and collaborators (2005) have similarly argued
that cognitive models of VWR must be rooted in what is
known about the neural bases of perception and categoriza-
tion. They specifically highlight some properties of the visual
cortex for object recognition which they propose must like-
wise be relevant for any model of VWR. One such property is
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the hierarchical organization of the receptive fields of
different neurons, which results in a progressive increase of
the complexity of the preferred features of different popula-
tions along the occipito-temporal ventral pathway. This
organization affords the integration of lower level features
into more abstract, higher-level representations and is gov-
erned by perceptual learning rules. Dehaene et al. argue that
the perception and recognition of orthographic stimuli are
subject to the same principles of hierarchical organization and
plasticity as the perception and recognition of other types of
learned categories; these processes thus must unfold with
units specialized for bars of various orientations, letter
fragments, letter shapes, abstract orthographic representation
(e.g., independent of the spatial location or the font type),
bigrams, and other intermediate units. However, as language
(and by association true reading) is a uniquely human skill,
noninvasive neurophysiological techniques are unavoidable if
formal proposals of reading are to be successfully integrated
with neuroscientific data.
7.2. Three examples of cross-talk among methodologies

7.2.1. ERPs and cognitive modeling: localizing the bottleneck
in dual task paradigms
Some excellent examples of the fruitful marriage of cognitive
models and electrophysiological research can be found in
other cognitive domains. Across a number of studies, different
ERP components (e.g., N1/P2, P3, N400, and LRP) linked to
qualitatively different processes (sensory/perceptual/atten-
tional processes, categorization processes, semantic pro-
cesses, and response preparation, respectively) have been
used to test alternative hypotheses about the loci of dual task
interference in the three different dual task paradigms: the
psychological refractory paradigm (PRP), the encoding-
speeded response (ESR) paradigm, and the attentional blink
(AB) paradigm. The PRP effect refers to the increase in RT to
the second of two successive stimuli requiring responses as
the interval between them is decreased. The ESR effect refers
to a similar effect even when the first of the two stimuli is
masked and requires an unspeeded much delayed response.
The attentional blink refers to an impairment in accuracy for
identifying the second of two target stimuli appearing 400–600
ms after detection of the first target. Only slightly delayed P3s
together with substantial and commensurate delays in the
LRP and RT at short intervals compared to long ones in the PRP
paradigm situate the locus of interference consequent to
stimulus identification and categorization but before response
selection (Osman and Moore, 1993; Luck, 1998). By contrast, P3
delays together with delayed RTs in the ESR paradigm situate
the locus of interference somewhere during the processes of
stimulus identification (Arnell et al., 2004). Normal early
sensory potentials and semantic modulation of N400 ampli-
tude together with completely suppressed P3 potentials
during the attentional blink localize AB interference to the
stage of working memory encoding (Luck et al., 1996; Vogel et
al., 1998). ERP data thus have unequivocally demonstrated
that dual task interference effects can arise at different stages
depending on the nature of the task, and in so doing have
helped to refine the cognitive models of dual task processing.
7.2.2. ERPs and computational models: error processing
ERP data have been similarly informative when combined
with computational models in certain domains. Yeung et al.
(2004), for example, built a model of error detection and
conflict monitoring from a combination of computational
simulations and ERP data. They proposed an account of the so-
called error-related negativity (ERN or Ne)—a potential seen
over fronto-central sites following the commission of an error
(or negative feedback). Their computational simulation was
not only able to integrate some apparently contradictory ERN
findings, but perhaps even more importantly, predicted a
previously unreported ERP effect (N2) that was subsequently
confirmed. Whether or not Yeung et al.'s conflict model of the
ERN turns out to be wholly or even partially correct, this study
is a prime example of the type of mutual interplay between
computational modeling and cognitive electrophysiology that
we espouse and aim to encourage with this review.

7.2.3. Computational models of eye movements and reading
What we espouse is cross-talk similar to that between VWR
modelers and researchers who record eye movements as a
primary dependent measure. Certain of these models, for
example, aim is to “explain” specific subparts of the reading
process such as the various patterns of eye movements of
readers scanning a text, including saccade generation, land-
ing positions, fixation times, and regressive saccades; these
are known to be determined by the physical and linguistic
characteristics of words (reviews in Reichle et al., 2003;
Reichle, 2006). Some of these computational models have
incorporated relevant physiological properties of the oculo-
motor system. The SWIFT model (Engbert et al., 2005), for
instance, embodies the separation between the “where” and
“when” pathways in the brainstem via temporal and spatial
control of saccades with little interaction. As in some models
of VWR, anatomical constraints derived from the split-fovea
proposal have also been implemented in a computational
model of eye movement control (McDonald et al., 2005).
Reichle et al. (2003) offer some tentative speculations of how
their influential A–Z model of oculomotor control might be
implemented in the brain. Eye movement control is situated
within the more general process of reading, which involves
the cooperation of different cortical and subcortical brain
regions. Cortical areas involved in VWR presumably work
together with anterior and posterior attention networks, as
well as with the oculomotor system including the pulvinar
nucleus, frontal eye fields, superior colliculus, and brain-
stem. Clearly, it is assumed that those computational
models of eye movements will eventually be integrated
into more general brain models of reading.

7.3. What electrophysiological measures to model?

A reasonable question that arises for modelers who are
convinced that there is some value in modeling electrophy-
siological patterns associated with VWR is how to simulate
patterns of electromagnetic activity. Most extant VWRmodels
were developed to simulate behavioral patterns—primarily,
error percentages and response latencies. There is, however,
no reason in principle or practice that such models could not
be adapted to simulate other dependent variables such as
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EEG power (in various frequency bands) and coherence, ERP
amplitudes, and especially onset, peak, or duration latencies,
either alone or in combination with each other as well as
coincident behavioral (and eye movement) measures, when
available; in the near future, there may also be value in
modeling ERP “components” derived from various data
reduction and/or decomposition techniques such as princi-
pal components analysis, independent components analysis,
and wavelet analysis. Naturally, the choice of the best
measure will depend on the specific VWR/reading phenom-
ena to be simulated (after piloting), but all of them are
potentially useful in analyzing the nature and time course of
important VWR processes. Unlike a reaction time which is
an endproduct measure that reflects the sum of individual
contributions from virtually every stage of processing lead-
ing up to the overt response, the ERP provides a continuous
measure of processing between the input and the response.
Moreover, to the extent that different ERP effects are shown
to index specific processes, these different effects can be
used to isolate the effects of various experimental manip-
ulations to specific stages of processing (e.g., certainly
stimulus versus response process, but even more precisely,
pre- or post-perceptual, conceptual, working memory con-
solidation, or response selection and execution processes as
discussed above). As ERPs are a direct measure of neural
activity and reflect the membrane currents at that moment
in time, the latency of a reliable difference between any two
ERP waveforms at the same recording site can be used as an
upper limit on the time by which the brain must have
appreciated the difference(s) between the stimuli eliciting
them; ERP onset latencies (along with peak latencies and
duration latencies) thus can be especially useful in specify-
ing when certain variables influence neural processing
(whether or not they are reflected in reaction times) and in
delineating the time course of VWR processes. A continuous
measure also provides the flexibility needed to measure the
potential flexibility of reading processes themselves in the
face of different contexts.

ERPs at the scalp surface are presumed to reflect primarily
the synchronous synaptic activity from a large number (at
least 10,000 or so) pyramidal cells that have spatially aligned
current flow acting in synchrony within patches of neocortex
(see Kutas and Dale, 1997). These synaptic computations
(10,000–20,000 synapses/cell generating synaptic potentials
that are subject to spatial and temporal summation) are the
basis of important cognitive computations. Amplitude
changes without concomitant changes in spatial distribution
across two or more conditions are often taken as engagement
of the same neural process, albeit differing in strength or
degree; these may reflect smaller post-synaptic potentials in
the same set of neurons, smaller number of active neurons, or
less temporal synchrony (see Rugg and Coles, 1995). Moreover,
statistically reliable between-condition differences in the
distribution of scalp potentials show incontrovertibly that
corresponding neural generators do differ somehow with
respect to their location, polarity, or intensity—in some
combination of location, polarity, and relative or overall
strength (Urbach and Kutas, 2002). Our understanding about
the exact relationship between neurobiological processes and
information processing is still relatively limited; indeed,
specifying these relationships is a major goal of the ambitious
program of cognitive electrophysiology, but past research and
present models underscore the value of using electrophysio-
logical signals as markers of different cognitive processes and
their unparalleled utility in delimiting the temporal locus of
processing bottlenecks, for example.
7.4. What electrophysiological effects to believe?

As the old adage goes, “garbage in, garbage out”. Unarguably,
then, a prerequisite for any model, whether cognitive or
computational, is the availability of clean and reliable data to
model. Skepticalmodelersmight find some of the ERP findings
on VWR reviewed herein to be confusing and/or inconsistent
as compared with the more extensive corpus of behavioral
findings.We have suggested that at least part of the variability
of the results across experiments is a natural consequence of
the intrinsic characteristics of the brain as a cognitive system:
its sensitivity to the context, as well as to previous and present
states, expectancies, and goals. Viewed from this perspective,
the apparent lack of any single temporally fixed set of VWR
subprocesses, far from undermining electrophysiological
evidence, raises, perhaps rightfully, questions about the
flexibility of VWR processes—questions that then need to be
addressed in a computational framework as well. Other
apparent inconsistencies are better understood considering
the nature of the techniques, for instance, the fact that some
authors report orthographic effects in the N400 component
while others found semantic effects in much earlier time
windows. The likelihood of picking up electromagnetic
activity on the scalp that is related to any particular cognitive
event depends on both temporal and anatomical considera-
tions (Münte et al., 2000). Indeed, many neuronal events may
not be detectable at the scalp, and this could vary with
circumstances and across individuals. Viewed from this
perspective, it should not be so surprising that some experi-
ments fail to detect early effects that actually transpire and
have observable processing consequences in later time
windows. As Hauk et al. (2006a,b) rightly pointed out,
averaging per se can lead to the loss of information in some
cases. Early effects are usually smaller in amplitude and of
shorter duration than later effects (which can last for
hundreds of milliseconds), so they are more vulnerable to
variability across items and/or subjects. Finally, it is important
to bear in mind that, in the scheme of things, electrophysio-
logical data are new players in the VWR field; there are many
more studies using behavioral than electrophysiological
measures, although this gap is closing with the rapid increase
of ERP studies of word processing in the recent past. As in any
research area riddled with inconsistent data, there is a need
for replication as well as a methodological and/or theoretical
account of why replication fails when it does. These often
include a specification of the relevant variables and take non-
negligible amounts of research (often years). In this process,
some ERP results will indeed fall by the wayside. Nonetheless,
we feel that, far from waiting until the dust settles, computa-
tional models should (because they can) play a more central
role in the integration and organization of the growing body of
empirical neurophysiological data on VWR.
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7.5. Summary

In summary, while our desire to see a bidirectional flow
between empirical data to computational models is not new,
the data we offer are, and we believe that the growing
empirical database reviewed herein, underscores the benefits
of the (relatively costly at least by comparison to behavioral
methods) ERP technique in helping VWR models to meet the
criterion of biological realism. We have shown how electro-
physiological research can be useful in addressing questions
that have been traditionally studied with behavioral techni-
ques, such as the effect of linguistic regularities, the role of
phonological processing, or the possible representation of
different orthographic, phonological, and semantic units. In
addition, these techniques are based on direct measures of
cerebral activity, and consequently contribute information
about anatomical and physiological constraints, as well as add
the critical temporal dimension to the description of the
reading process. On the other hand, electrophysiological
researchers clearly will benefit from using computational
models in the generation and design of future experiments
and as a tool for organizing and interpreting the resulting data.
8. General conclusions

Reading is a very complex, integrated set of perceptual,
cognitive, andmotor skills that most (although not all) literate
adults carry out with relative ease. Successful reading relies
on attentional mechanisms, sensory–perceptual analyses,
working memory and long-term memory processes, as well
as eyemovements (Coltheart, 1987; Klein andMcMullen, 1999).
A central issue in the study of reading is to understand how
written words activatemental representations in the brain via
the visual system, as a result of the orchestration of these
various processes. Clearly, a full understanding will require
due consideration to the biological structures in which the
requisite computations transpire and their temporal courses.

Several computational models have been remarkably
successful in simulating various aspects of human VWR.
These models can be divided in two main types depending
primarily upon whether they use local versus distributed
representations and the number of intermediate levels
represented. These models are now faced with incorporating
reading-relevant biological constraints and of recognizing not
just simple words but the more common complex (polymor-
phemic or polysyllabic) words in languages.

Although reading is not a genetically transmitted cogni-
tive ability, it seems to involve the progressive specialization
of specific brain areas. It has thus been possible to associate
activity in different brain regions during reading with initial
perceptual analysis, orthographic decoding, and phonologi-
cal processing. Electrophysiological data in particular suggest
that VWR is not an encapsulated, fixed process but rather a
highly flexible, dynamic system of processes that can adapt
its temporal course to the available context and task
demands at hand. We have argued that this time course
and its flexibility have relevant inescapable implications for
any computational model of VWR. Moreover, some of the
brain areas essential for reading are strongly left lateralized,
although there is also support for some right hemisphere
involvement. The functional consequences of these anato-
mical constraints need to be simulated by any viable model
of VWR in processing words with one or more syllables and/
or morphemes. To the extent that the ERP data continue to
evidence the decomposition of complex words during the
recognition process, modelers will be compelled to modify
existing computational models so as to simulate such
intermediate representations.

Naturally, beforemodelers can be expected to substantially
alter their VWR models, psychologists and neuroscientists –
especially (although not exclusively) those using electrophy-
siological and electromagnetic measures – will need to amass
a solid corpus of reliable empirical data that modelers can use
as specifications for their models. As outlined herein, neuro-
physiological measures have the temporal resolution to help
resolve outstanding issues regarding the temporal course of
the various reading-related processes, the nature of the
various sublexical units involved, the differential roles of the
two cerebral hemispheres, and the various dual route
accounts, among others. We suggest that it is time that
computational modelers and neurophysiologists come
together in practice and in theory to unravel the mysteries of
reading.
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