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Abstract

Mass univariate analysis is a relatively new approach for the study of ERPs/ERFs. It consists of many statistical tests

and one of several powerful corrections for multiple comparisons. Multiple comparison corrections differ in their

power and permissiveness. Moreover, some methods are not guaranteed to work or may be overly sensitive to

uninteresting deviations from the null hypothesis. Here we report the results of simulations assessing the accuracy,

permissiveness, and power of six popular multiple comparison corrections (permutation-based control of the fam-

ilywise error rate [FWER], weak control of FWER via cluster-based permutation tests, permutation-based control of

the generalized FWER, and three false discovery rate control procedures) using realistic ERP data. In addition, we

look at the sensitivity of permutation tests to differences in population variance. These results will help researchers

apply and interpret these procedures.

Descriptors: EEG/ERP, MEG, False discovery rate, Permutation test, Hypothesis testing

As detailed in a companion article (Groppe, Urbach, & Kutas,

2011), a mass univariate analysis is an approach to analyzing
data involving a massive number of univariate hypothesis tests
(e.g., t tests) with relatively powerful corrections for the large

number of comparisons like permutation tests or false discovery
rate control. This approach is superior to conventional mean
time window, ANOVA-based analysis of event-related brain
potentials (ERPs) and event-related brain magnetic fields

(ERFs) in that it requires fewer a priori assumptions and can
provide greater temporal and spatial resolution. While these
benefits come with some loss of statistical power, in many cases,

the power that remains may be more than adequate to detect
effects of interest. Thus, mass univariate analyses can be a valu-
able complement to and, in some cases, may even obviate the

need for conventional ERP/ERF analyses.
At the same time, however, some popular mass univariate

procedures may not be generally appropriate for ERP/ERF

analysis given that the procedures may be more permissive than

desired due to the structure of ERP/ERF data or random vari-
ation in the performance of the procedure. Specifically, there are
the following potential concerns:

1. Independent samples permutation tests (e.g., Blair &
Karniski, 1993; Korn, Troendle, McShane, & Simon, 2004;

Maris & Oostenveld, 2007) may be overly sensitive to differ-
ences in variance between the two populations being sampled.
For example, the data from a clinical population (e.g.,

children diagnosed with attention-deficit hyperactivity disor-
der) may be noisier than those from the control population
but otherwise identical. Although such a difference is likely

not of interest, it could lead to significant test results that are
misattributed to differences in central tendency (i.e., mean
ERP/ERF amplitude) that are of primary interest.

2. The Benjamini andHochberg (1995) false discovery rate (FDR)

control procedure may not accurately control FDR since ERP/
ERF data at one time point and sensor may be negatively cor-
related with ERP/ERF data at another time point and sensor.

ERP/ERF data are probably generally approximately normally
distributed, and the Benjamini and Hochberg FDR control
procedure is not guaranteed to work on normally distributed

data with such negative correlations (Benjamini & Yekutieli,
2001). However, since FDR of normally distributed data tends
to behave as if the tests are independent as the number of tests

increases (Clarke & Hall, 2009), the Benjamini and Hochberg
procedure may typically be accurate in practice.

3. The Benjamini, Krieger, and Yekutieli (2006) FDR control
procedure may not accurately control FDR since ERP/ERF

data at one time point and sensor are typically highly
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correlated, and this procedure is only guaranteed to work
when the different dimensions of the data are independent.
Again, though, in practice this procedure may typically be

accurate (Clarke & Hall, 2009).
4. FDR control procedures may be prone to alarmingly high pro-

portions of false discoveries, even if on average they accurately

control FDR. Korn and colleagues (2004), for instance, found
that when the Benjamini and Hochberg procedure was applied
to simulated data using an FDR level of 10%, there was a 10%

chance that the true proportion of false discoveries was 29% or
more, for some simulation parameters.

5. Since the cluster-based permutation test (Bullmore et al.,
1999; Maris & Oostenveld, 2007) provides only weak control

of the familywise error rate (FWER), it ismore likely, albeit to
an unknown degree, to make false discoveries than methods
that provide strong control of FWER when some effects are

truly present. Thus, the FWER and FDR of the procedure
may be surprisingly high when effects are truly present.

In this paper, we report the results of simulation studies designed
to evaluate the extent to which these potential problems are ac-
tual problems for mass univariate analyses of ERPs/ERFs. To

that end, we applied all of the multiple comparison correction
procedures reviewed in the companion article (Groppe et al.,
2011) to realistic, simulated ERP data, with which we could
precisely evaluate their susceptibility to the concerns raised above

as well as the relative power of these methods to detect various
sized effects. Specifically the procedures we investigate here are:

� Permutation-based strong control of FWER based on the
standard t statistic (tmaxFBlair & Karniski, 1993),

� Cluster-based permutation tests with weak control of FWER
based on maximum cluster-level mass (Bullmore et al., 1999;

Maris & Oostenveld, 2007),
� Benjamini and Hochberg’s (1995) FDR control algorithm

(BH),

� Benjamini and Yekutieli’s (2001) FDR control algorithm
(BY),

� Benjamini, Kreiger, & Yekutieli’s (2006) FDR control algo-

rithm (BKY),
� Korn et al.’s (2004) permutation-based procedure for gen-

eralized familywise error rate (GFWER) control based on the

standard t statistic (KTMS).

We also contrasted these methods to the Bonferroni-Holm pro-

cedure1 (BonHFHolm, 1979) that provides strong control of
FWER in order to provide a sense of how all these procedures
compare to a classic multiple comparison correction with which
many researchers are familiar.

Simulation Studies of the Effect of Between-Population

Differences in Variance on Permutation Tests

Background

The purpose of the simulations described in this section was to

assess how sensitive the independent samples permutation test is
to between-population differences in variance using realistic elec-

troencephalogram (EEG) background noise and a realistic num-
ber of comparisons. Previous work using simulated normally
distributed data has shown that the independent samples permu-

tation test based on the standard independent samples t statistic is
rather insensitive to differences in variance between populations
when the sizes of the samples from the two populations are equal

(Murphy, 1967). This is true even when the group standard de-
viations differ by as much as a factor of four. However, when
group sizes differ by a factor of two, the permutation test can be

quite anticonservative (if the smaller sample has greater variance)
or overly conservative (if the larger sample has greater variance)2.
Note, however, that Murphy’s simulations were all based on a
single dependent variable (i.e., therewas only a single comparison

in the family of tests), and it is not clear how well these results
generalize to the large number of highly correlated comparisons
that would be typical of ERP/ERF analyses.

To find out if this is the case, we extended Murphy’s simu-
lations using realistic, simulated ERP data and a realistic number
of comparisons. As with Murphy’s original study, different

numbers of participants per sample and multiple degrees of be-
tween-population variation differences were modeled. In addi-
tion, we utilized permutation tests based on three different test

statistics to determine if some statistics were more insensitive
than others to between-population differences in variance. These
statistics were the standard independent samples t statistics (t),
Welch’s approximate t statistic (tW), and the difference between

group t scores3 (tdif). The equations for these statistics are as
follows:

t ¼ m̂1 � m̂2

ŝp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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þ 1

n2

q ð1Þ
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where m̂1and m̂2 are the estimated means, ŝ1 and ŝ2 are the es-

timated standard deviations, and n1 and n2 are the sample sizes of
Sample 1 and Sample 2, respectively. ŝp is the estimated pooled
standard deviation:

ŝp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þŝ21 þ ðn2 � 1Þŝ22

n1 þ n2 � 2

s
ð4Þ

Based on Murphy’s univariate results, we expected Welch’s t

to be less sensitive to differences in variance than the standard t
statistic. We also expected the tdif statistic to be less sensitive
to differences in variance than the standard t statistic since
each group of data is independently normalized by its estimated

standard deviation before the between-population difference is
measured.

2 D.M. Groppe, T.P. Urbach, and M. Kutas

1. Bonferroni-Holm is a slight variation of the standard Bonferroni
procedure that is applicable whenever the Bonferroni procedure is ap-
propriate and is always at least as, if not more, powerful.

2. It is worth noting that Murphy also found that the standard in-
dependent samples t test was as badly affected as the permutation test by
between-population differences in variance.

3. t scores are derived by dividing the estimatedmean of a population
by the estimated standard deviation. Often such statistics are called z
scores, but they are more accurately called t scores since the values will
follow a t distribution if the data come from a normally distributed pop-
ulation or the sample size is sufficiently large.



Simulation Parameters

Realistic EEG background noise was derived from the data of 37
volunteers who performed a simple tone counting task (Groppe

et al., 2010). The University of California, San Diego Institu-
tional Review Board approved the experimental protocol. Each
participant’s EEG was recorded at 26 scalp channels using a left
mastoid reference and an analog bandpass filter of 0.016–100Hz.

EEG was digitized at a 250 Hz sampling rate. After recording,
the EEG was rereferenced to the algebraic mean of both mas-
toids, low-pass filtered at 50 Hz, and artifact polluted trials were

either rejected or artifact corrected using independent compo-
nents analysis (Lee, Girolami, & Sejnowski, 1999). ERPs were
derived from epochs of EEG time-locked to tones and lasting

from 100 to 920ms peritone onset. The ERPwas then subtracted
from each epoch to produce trials of zeromean EEGbackground
noise. On average, there were 66 trials per participant (SD5 6).
Data points of interest for these simulations were all time points

from 100 to 900 ms at all scalp channels. The median standard
deviation of the background noise at these data points across all
37 participants was 9.54 mV (IQR5 3.82 mV). For further

experiment details, see Groppe et al. (2010).
To simulate a single ERP experiment, participants were

randomly selected (without replacement) from the pool of 37

participants and assigned to one of the two experimental groups.
The ERPs were derived from each participant by randomly se-
lecting (with replacement) 49 of that participant’s background

noise trials, removing the mean prestimulus voltage (� 100 to 0
ms), and averaging the trials. For each experiment, a permuta-
tion test was applied to detect differences at all scalp channels
from 100 to 900 ms (201 time points � 26 channels5 5226

comparisons) using a familywise alpha level of 5%. Five thou-
sand random permutations were used for each test to approx-
imate the set of all possible permutations. Simulated experiments

were run using different group sizes and different noise levels. To
manipulate the noise level of a group, that group’s ERPs were
multiplied by one of the following factors: 4/3, 5/3, or 2. For each

group size and noise level, 4000 simulated experiments were run
to estimate the probability of erroneously rejecting one or more
null hypotheses.

In addition to the above simulations, an additional set of 2000
simulations were run on a simulated N1 ERP effect (Naatanen &
Winkler, 1999) to assess the power of the three different test
statistics. Simulated ERPs were produced by the same procedure

used above, but now a 3 mVdifference between groups was added
from 100 to 140 ms at 14 fronto-central electrodes. Thus, 154 of
the 5226 null hypotheses were false. The size of the effect was

chosen such that all tests would have a medium degree of effect
sensitivity. For these simulations, there were no between-group
differences in variance but the numbers of participants per group

were varied as before.

Simulation Results

Figure 1 shows the FWER of the three test statistics for different
sample sizes as a function of their differences in standard devi-

ation. When using the standard t statistic and Welsh’s t, the
simulations replicate Murphy’s three general findings:

1. When the two samples are of equal size, there is a moderate
increase in FWER when the populations differ in variance.

2. When the two samples differ in size and the population
corresponding to the smaller sample varies more, the permu-
tation test tends to be anticonservative. The degree of FWER

inflation can be severe (e.g., greater than 25% of the nominal
level).

3. When the two samples differ in size and the population cor-

responding to the smaller sample varies less, the permutation
test tends to be overly conservative.

The degree of FWER inaccuracy, though, is somewhat less when
the permutation test is based on Welch’s t rather than the stan-

dard t and the samples differ in size. The permutation test based
on the tdif statistic is also subject to some FWER inaccuracy
when the groups differ in variance. In general, it becomes in-
creasingly anticonservative as the difference in variance between

populations increases (regardless of which sample is smaller).
However, the degree of anticonservativeness is quite small, es-
pecially relative to the other two statistics.

With regards to power, the N1 effect simulation results
(Figure 2) show that the standard t statistic is most powerful,
with Welch’s t being only somewhat less powerful. The tdif sta-

tistic was considerably less powerful than the other two statistics.
These differences in power tend to grow as the difference between
sample sizes increases.

Simulation Studies Evaluating the Permissiveness and Power of

Strong FWER, Cluster-Based Weak FWER, GFWER, and FDR

Control Methods

To explore the relative permissiveness and power of the four types
ofmultiple comparison correctionmethods covered in this paper,

exemplars of eachmethodwere applied to four types of simulated
ERP effects: a null effect (i.e., just EEG background noise), a
very focal early sensory effect, a broadly distributed late effect,

and the combination of the early and late effects. Themotivation
for simulating all four effects was to assess the frequency of false
and true discoveries of the various methods as a function of the
number of false null hypotheses. In addition, the simulations

were performed using bimastoid referenced ERP background
noise as well as average reference ERP background noise because
the bimastoid reference is representative of a great proportion of

ERP research and the average reference induces a large propor-
tion of negative correlations between tests (Luck, 2005). The
latter is of interest to determine if the BH and BKYmethods can

accurately control FDR despite a realistically large proportion of
negative correlations.

This work builds on some previous evaluations of the power
and permissiveness of these mass univariate procedures using

simulated and real EEG/MEG data.

Previous Work on FDR Permissiveness

Regarding the accuracy of two of Benjamini and colleagues’
FDR procedures and their propensity to return a high propor-

tion of false discoveries, Hemmelmann, Horn, Susse, Vollandt,
and Weiss (2005) applied the BH and BKYprocedures to multi-
variate normal data with various covariance structures and num-

bers of false null hypotheses. They found that both algorithms
reliably controlled FDR at or below the nominal 5% rate, even
when the dimensions of the data were highly positively correlated
or exhibited a mixture of positive and negative correlations. This

Mass univariate analysis of ERPs/ERFs II 3



occurred even though the number of comparisons was relatively
small, 40. This result is consistent with applications of the BKY
procedure to simulated data with positive correlations (Benja-
mini, Krieger, & Yekutieli, 2006) and of the BKYand BH pro-

cedures to simulated data with positive and negative correlations

(Kim & van de Wiel, 2008). Hemmelmann and colleagues also
found that the BH and BKYprocedures were not terribly prone
to a high proportion of false positives. Specifically, using a nom-
inal FDR level of 5%, they found that the probability of getting

10% or more false discoveries was generally less than 20%.

4 D.M. Groppe, T.P. Urbach, and M. Kutas

Figure 1. Familywise error rate of independent samples tmax permutation tests based on different t statistics as a function of between-population

differences in standard deviation. nA and nB equal the number of subjects in Samples A and B, respectively. sA and sB equal the standard deviation of the
data in Samples A and B, respectively. Left and right columns show results from simulations based on 24 and 36 total subjects, respectively. Error bars

indicate 95% confidence intervals. Horizontal solid line indicates nominal 5% familywise error rate. Note that the standard t and Welsh’s t statistic are

mathematically equivalent when the two groups being compared consist of equal numbers of subjects.
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Figure 2. Sensitivity of between-group tmax procedure based on three different test statistics to a simulated N1 effect. A sensitivity of 1 means that the

entirety of the N1 effect was detected (i.e., at all time points and electrodes). A sensitivity of 0 means that the N1 effect was entirely missed. x-axis

indicates the number of subjects in each of the two samples. Error bars indicate 95% confidence intervals. Note that the standard t andWelsh’s t statistic

are mathematically equivalent when the two groups being compared consist of equal numbers of subjects.



While these results generally support the use of the BH and
BKYprocedures, it is difficult to tell how representative Hemm-
elmann and colleagues’ simulations are of ERP/ERF data. For

example, ERP/ERF data may exhibit negative correlations that
are much stronger andmore frequent than that of their simulated
data, and this may deleteriously affect FDR control permissive-

ness. Lage-Castellanos, Martinez-Montes, Hernandez-Cabrera,
and Galan (2010) took steps to remedy this shortcoming by ap-
plying the BH and BYalgorithms to simulated ERP data using

realistic ERP noise generated from actual ERP data and sine
wave-derived ERP effects. Using these data, relatively small-to-
moderate numbers of comparisons (200 to 3,800), and a nominal
FDR level of 5%, they found that the BY algorithm always

tended to control the FDR level well below 5% and that the BH
algorithm generally tended to do so save for one simulation in
which the estimated FDR level was too high, 9.7%. However,

these results are hard to interpret since there was not a clear
distinction between time points and electrodes that did and did
not exhibit an ERP effect. Specifically, Lage-Castellanos et al.

defined time points exhibiting ERP effects as those for which the
amplitude of the ERP effect was greater than or equal to 0.5
standard deviations of the ERP noise. Since the sine-wave ERP

effects differed from zero atmanymore time points than this, it is
possible that the BH algorithm still accurately controlled FDR.
In addition, Lage-Castellanos and colleagues did not estimate the
propensity of these procedures to return a high proportion of

false discoveries.
The work presented in this article builds on these results by

using realistic simulated ERP data with a clear distinction be-

tween data points with andwithout ERP effects.We also evaluate
all three of Benjamini and colleagues’ algorithms for their ability
to accurately control FDR and for their propensity to return a

high proportion of false discoveries.

Previous Work on Cluster-Based Permutation Test Permissiveness

To the best of our knowledge, this is the first work to examine the

FWER and FDR of cluster-based permutation tests when effects
are truly present.

Previous Work on the Relative Power of Various Mass Univariate

Procedures

To the best of our knowledge, there are only two published

comparisons of the relative power of various mass univariate
tests using ERP/ERF data. Maris and Oostenveld (2007) com-
pared the ability of various test statistics to detect theN400m (the

MEG analog of the N400 ERP effect) in real data from a single
subject using a very large number of comparisons (151 sensors
� 600 time points5 90,600 comparisons) and permutation
tests. They explored fourmass univariate statistics: themaximum

sum of t scores in a cluster, the maximum size of a cluster, the
maximum t score (i.e., tmax), and the maximum absolute differ-
ence between means.4 The latter two, noncluster-based statistics

provide strong control of FWER, and the cluster-based statistics
provide weak control of FWER. Of these, they found that the
two cluster-based statistics tended to be able to detect at least part

of the N400m effect with the fewest number of trials, 11. The tmax

test required approximately twice as many trials, and the max-
imum absolute difference between the means required about

three times as many trials. It is difficult to know how reliable
these differences are since Maris and Oostenveld reported quan-
titative results for only a single random selection of trials. How-

ever, they mention that the results were highly similar when they
repeated the comparison with different sets of random trials, and
there is good a priori reason to expect that cluster-based statistics
are better at detecting a broadly distributed effect like the N400m

(Bullmore et al., 1999).
More recently, Lage-Castellanos and colleagues (2010) com-

pared the power of two of Benjamini and colleagues’ FDR con-

trol algorithms (BH and BY) and the tmax permutation
procedure on simulated ERP data and a real P3 dataset.5 The
number of comparisons ranged from 200 to 4940. On the sim-

ulated data, they found that the BH procedure tended to be 10%
to 45% more powerful than tmax, while the BY procedure was
5% to 15%more powerful than tmax. When applied to real ERP

data, the BH procedure again proved clearly most powerful,
though the tmax procedure was actually more powerful than the
BY procedure.

Lage-Castellanos et al.’s results are generally consistent with

Hemmelmann and colleagues’ (2005) analysis of variousmultiple
comparison correction procedures using simulated normally dis-
tributed data and a real EEG coherence dataset (171 compar-

isons). Of the methods examined in our investigations,
Hemmelmann et al. tested the BH and BKY FDR control pro-
cedures, and ‘‘step-up’’ variants6 of tmax and Korn et al.’s

GFWER procedure, which are more powerful and computa-
tionally intensive than the tmax and GFWER procedures used
here. Across a variety of different types of covariance matrices,
numbers of comparisons, and proportion of false null hypoth-

eses, they found that FDR control was more powerful than the
tmax and GFWER control procedures, except when a very small
proportion of null hypotheses were false. They also found that

the BKYprocedure was generally as or more powerful than BH,
especially when a large proportion of null hypotheses were false,
and that their GFWER procedure was generally significantly

more powerful than the step-up version of tmax. The relative
power of thesemethods was qualitatively similar when applied to
real EEG coherence data.
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4. In addition, Maris and Oostenveld investigated four other ‘‘global
statistics’’: sum of the positive/negative t scores, mean of the positive/
negative t scores, sum of the positive/negative difference between means,
and mean of the positive/negative difference between means. These sta-
tistics are ‘‘global’’ in that they can only detect that a difference exists
somewhere in a family of tests, but they do not determine exactly which
tests are significant. In contrast, the mass univariate tests identify pre-

cisely which tests are significant in the family of tests. It is worth noting
that Maris and Oostenveld found that all of the mass univariate tests
tended to be more powerful than the global tests. Hemmelmann et al.
(2004) also found that mass univariate permutation tests were quite
powerful relative to such global permutation tests when applied to ar-
tificial normally distributed data and EEG coherence data.

5. Lage-Castellanos and colleagues also investigated the relative
power of local-FDR control (Efron, 2004), another method for multiple
comparison correction not covered here.

6. The step-up variants of the strong FWER and GFWER proce-
dures work analogously to the Bonferroni-Holm procedure. The per-
mutation test is initially run including all comparisons. If no comparisons
are significant, the procedure stops. Otherwise, the most significant com-
parison is assigned the p value from the test and removed from further
analysis. This procedure (starting with another permutation test) is then
repeated on the remainder of the comparisons, et cetera, until none of the
comparisons still under consideration reach significance or until all com-
parisons are deemed significant.



Here we build on this work by evaluating all of these multiple
comparison correction methods using realistic simulated ERP
data with clearly defined broadly and/or narrowly distributed

effects. By using realistic simulations, our results are more likely
to generalize to actual ERP/ERF analyses than those of Hemm-
elmann et al. (2005). Moreover, we contrast some multiple com-

parison correction procedures that have not yet been contrasted
on ERP/ERF data (e.g., cluster-based tests versus FDR con-
trols). Also, by using a variety of simulated effects, we can better

evaluate the general power of the cluster-based tests than Maris
and Oostenveld (2007).

Based on previous findings and the mechanics of these meth-
ods, we expect FDR control and the cluster-based permutation

test to be the most powerful procedure when broad effects are in
the data and tmax and GFWER control to be the most powerful
when only narrow effects are present.What is not clear is how the

cluster-based test compares to the ability of FDR control to
capture broad effects, nor just how large the differences in power
are between the different methods when applied to ERP/ERF

data. Understanding the latter is obviously key to deciding if
using a more powerful method (e.g., BH) is worth the added
uncertainty that might accompany that procedure (e.g., uncer-

tainty as to the significance of any single test result).

Simulation Parameters

Realistic EEG background noise was derived from the data of 23
volunteers who performed a linguistic priming task (Groppe,

Choi, Topkins, & Kutas, 2009). EEG recording and artifact
correction parameterswere the same as those used in the previous
simulation study and, again, the University of California, San

Diego Institutional Review Board approved the experimental
protocol.

ERPs were derived from epochs of EEG time-locked to text

primes and lasting from � 100 to 920 ms peritone onset. The
ERP was then subtracted from each epoch to produce trials of
zero mean EEG background noise. On average, there were 223
trials per participant (SD5 12). Data points of interest for these

simulationswere all time points from 100 to 900ms at all 26 scalp
channels for a total of 5226 dependent variables (i.e., 26 channels
� 201 time points). The median standard deviation of the

background noise at these data points across all 23 participants
was 10.56 mV (IQR5 3.41 mV).

To create average reference noise, the procedure was the same

save that after artifact correction the mean voltage across all
channels was removed from the EEG at each time point. The
median standard deviation of the average reference background

noise at the data points of interest across all 23 participants was
6.49 mV (IQR5 2.33 mV).

To simulate a single ERP experiment, ERPs were derived for
each of the 23 participants by randomly selecting (with replace-

ment) 49 of that participant’s background noise trials, removing
the mean prestimulus voltage (� 100 to 0 ms), and averaging the
trials. Save for simulations of ERP null effects, a deflection was

added to each participant’s noise ERPs to simulate one of three
possible ERP effects. The first of these effects was a focal early
effect based on the N170 ERP component to text (Bentin, Mo-

uchetant-Rostaing, Giard, Echallier, & Pernier, 1999). This sim-
ulated ‘‘N170’’ effect was a deflection of 1 mV at a single left
lateral occipital electrode from 140 to 190 ms, which is probably
as extremely focal an ERP/ERF effect as one might observe.

Thus for the N170 simulations, the null hypothesis was false at
only 13 dependent variables (i.e., 0.2% of the total number of
null hypotheses). The magnitude of the N170 effect was chosen

such that the sensitivity of the multiple comparison correction
procedures was medium to low.

The second simulated effect was a broad, late effect roughly

based on the P3 ERP component to text (Bentin et al., 1999). The
simulated ‘‘P3’’ effect was a deflection of 1.3 mVat 13 central and
posterior electrodes from 400 to 700 ms. Thus for the P3 sim-

ulations, the null hypothesis was false at 988 dependent variables
(i.e., 18.9% of the total number of null hypotheses). The mag-
nitude of the P3 effect was chosen to be greater than that of the
N170 effect but small enough to produce only a medium-to-high

degree of effect sensitivity. The combined early and late effect
simulations simply combined the N170 and P3 deflections. Thus
for the combined effect simulations, the null hypothesis was false

at 1001 dependent variables (i.e., 19.2% of the total number of
null hypotheses).

Each of the four types of ERP effects were simulated 1000

times and analyzed each time by applying two-tailed, one-sample
t tests to all scalp channels from 100 to 900 ms. The following
seven methods were used for multiple comparison correction:

1.–2. To strongly control the FWER at 5%, the Bonferroni-
Holm (Holm, 1979) and tmax permutation (Blair & Karni-
ski, 1993) procedures were used.

3. To weakly control FWER at 5%, the maximum cluster-
level mass permutation procedure was used (Bullmore et
al., 1999; Maris & Oostenveld, 2007).

4. To control the GFWER with a 5% chance of more than
one false discovery, the permutation-based procedure in-
troduced by Korn et al. (2004) was used.

5.–7. To control FDR at 5%, the BH, BY, and BKYprocedures

were used. Note that because the BH and BY procedures
should actually control FDR at 5% times the proportion
of null hypotheses that are actually true (Benjamini & Ye-

kutieli, 2001), their nominal level of FDR control is ap-
proximately 4% when applied to the P3 and combined
N170/P3 effects due to the moderate fraction of false null

hypotheses.

Finally, the degree of correlation between variables was esti-

mated by computing the correlation between each pair of de-
pendent variables (i.e., 13,652,925 pairs) for each of the 1000 null
effect simulations. For the bimastoid referenced noise, the me-

dian percentage of negatively correlated variable pairs per sim-
ulation was 13.1% (IQR5 8.2%). For the average reference
noise, the median percentage of negatively correlated variable
pairs per simulation was 50.9% (IQR5 0.1%).

Simulation Results

Figures 3–6 illustrate various measures of the permissiveness of
the multiple comparison correction procedures. In general, the
tmax, cluster-based test, and KTMS procedures allow the most

false discoveries when the proportion of false null hypotheses is
small or none (i.e., for theN170 and null effects). However, when
there are a moderate number of false null hypotheses (i.e., for the

P3 and combined P3/N170 effects), the FDR control and cluster-
based methods are the most permissive, with the BH and BKY
methods being the most permissive of all. Importantly, all cor-
rection procedures accurately control the specified number or
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proportion of false discoveries at or below their nominal levels.
This is particularly notable for the BH and BKY FDR control

procedures since they are not guaranteed to control FDR due to
the correlations between some pairs of variables. It is also notable
that the FDR and cluster procedures only rarely produce a large
percentage of false discoveries (i.e., greater than 20%FFigure 6),

even though the BH procedure has been shown to do the op-
posite on less realistic data (Korn et al., 2004). Finally, with

regard to the cluster-based permutation test, its permissiveness is
comparable to that of tmax when few or no null hypotheses are
false. When broad effects are present in the data, the cluster
procedure’s propensity to produce some false discoveries is
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considerably less than that of the BH and BKY FDR control
procedures (Figures 3 & 5), and its FDR rate is comparable to
that of BH and BKY (Figure 4).

Figures 7 and 8 illustrate two differentmeasures of test power.
For the narrowly distributed N170 effect, the cluster-based test
has almost no ability to detect the effect, and the BYprocedure is
worse at detecting it than Bonferroni-Holm. The remaining pro-

cedures are about twice as likely to detect the effect than Bon-
ferroni-Holm, with the KTMS and tmax methods tending to be

the best.When the broad P3 effect is in the data, the cluster-based
test and the FDR control methods are clearly the best at detect-
ing the greatest proportion of tests where some effect is present,

with the cluster-based procedure being the very best and the BH
and BKYmethods being almost as good (Figure 7). These results
are generally true of each method’s ability to detect at least one
member of each effect as well, except for the cluster-based test,

which almost never detects both the N170 and P3 because it is so
poor at detecting the N170 (Figure 8).
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Lastly, the choice of reference has no considerable effect on
the permissiveness or relative power of the multiple comparison

procedures. This is most notable for the BH and BKY proce-
dures, since they are not guaranteed to work when some pairs of
tests are negatively correlated, and about half of all test pairs are

negatively correlated when the average reference is used (see
Simulation Parameters). Some readersmight note that all the test
procedures are more powerful when applied to the average ref-

erence data than the bimastoid-referenced data. This is because
the magnitude of the background noise is greatly reduced when
the average reference is used but the magnitude of the effects is

the same for both references. Keep in mind that this is an artifact
of the simulation since effects were added after the background
noise was converted to average reference in order to keep the
number of false null hypotheses constant across the two types of

reference. With real data, effects like the ones used here that
appear at largely or entirely a single polarity at utilized sensors

will also have their magnitude diminished when converting to the
average reference. Thus, these results should not be taken as

evidence that the average reference is generally more powerful
than the bimastoid reference.

Discussion

The purpose of the simulation studies presented in this article was
to evaluate the accuracy and relative power and permissiveness of
several popular multiple comparison correction procedures as

applied to mass univariate analysis of ERP/ERF data. These
procedures differ primarily in the type of false discovery statistic
each explicitly controls, which makes the methods differ in their

ability to detect various types of effects, their likelihood to make
false discoveries, and the certainty they provide regarding the
statistical significance of any single test result. Moreover, some
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methods are not generally guaranteed to work or may be unde-
sirably sensitive to somedeviations from the null hypothesis (e.g.,
differences in variance between populations) that are not of in-

terest. Consequently, simulation studies like those reported here
are critical for helping researchers know which multiple com-
parison correction procedures are best suited for a particular

research question and how much one can trust the results of a
particular procedure.

Sensitivity of Independent Samples Permutation Tests to

Differences in Population Variance

The first issue we addressed in this paper was the sensitivity of an
independent samples permutation test to differences in popula-

tion variance. Independent samples permutation tests, like the
most popular parametric independent samples tests (i.e., t test
and analysis of variance [ANOVA]), are based upon the null

hypothesis that the two samples come from identically distrib-
uted populations. Thus, the test may be sensitive to any differ-
ence between populations (e.g., differences in variance), not just

differences in their means. Since such differences may reflect
different amounts of noise in the two samples that are not gen-
erally of interest to ERP/ERF studies, it is important to know

how likely the procedure is to detect such differences.
Our simulations, like those of Murphy (1967), show that a

permutation test based on the standard independent samples t
statistic is rather insensitive to differences in population variance

when the samples being compared are of equal size. Critically,
however, when the samples differ in size by even a small amount,
the test results can be considerably affected by differences in

variance (e.g., a FWER around 20% when the nominal FWER
is 5%). This sensitivity increases as the difference in sample size
or variance between groups grows. This sensitivity can be re-

duced by using alternative test statistics: for example,Welsh’s t or
tdif. This is especially true of tdif, which we find to be remarkably
insensitive to differences in variance. At the same time, however,
these alternative test statistics are also less sensitive to differences

in means than the standard t statistic. Consequently, the best
approach to applying independent samples permutation tests is
to design the experiment such that sample sizes are equal and to

use the standard t statistic.When this is not possible, it is essential
to compare the variances of the two populations being compared.
If there is evidence (or strong a priori reason to believe) that the

two populations differ in variance, one should useWelsh’s t if the
difference in variance and sample sizes is small (e.g., a between-
group sample size ratio of 1.25 and variance ratio of 1.4) and tdif
if those differences are larger. Note that, although we did not
investigate the sensitivity of cluster-based permutation tests or
tests based on the independent samples F statistic, we see no
reason why these results would not be generally true of those

procedures as well.

Accuracy, Permissiveness, and Power of FDR Methods

Of all the methods investigated here, the FDR control methods
developed by Benjamini and colleagues perhaps come with the
greatest uncertainty since two of the methods, BH and BKY, are

not generally guaranteed to work, and any FDR method could,
in principle, produce an alarmingly high proportion of false dis-
coveries with some frequency (Korn et al., 2004). However, like
Hemmelmann et al. (2005), our study found no evidence of either

of these possible problems using realistic ERP data, a conven-
tional FDR level of 5%, and a realistic number of comparisons.
With higher FDR levels (e.g., 10%FKorn et al., 2004), high

proportions of false discoveries might occur with much greater
frequency. Thus, such FDR levels should probably be avoided.
With fewer comparisons than what we’ve used here, it is also

possible that the BH and BKY methods would not accurately
control FDR (Clarke & Hall, 2009). However, given that we
know of no cases in which either of these methods has terribly

failed at controlling FDR,7 we suspect that these methods will
generally perform rather accurately with ERP/ERF data regard-
less of the number of comparisons. Researchers concerned about
their accuracy can readily perform simulations like those re-

ported here to assess their performance for other types of com-
parisons or use the BYprocedure, which is always guaranteed to
control FDR.

Regarding power, the BH and BKYprocedures appear to be
the most generally useful since they have relatively good power
for detecting both very narrowly and broadly distributed effects

(see also Hemmelmann et al., 2005; Lage-Castellanos et al.,
2010). Thus, these procedures are probably the best suited for
mass univariate analysis of ERP/ERF data in general unless one

needs to be certain as to the reliability of every single test result
(i.e., one needs strong control of FWER) or one is primarily
interested in broadly distributed effects.

Permissiveness and Power of Cluster-Based Permutation Tests

with Weak Control of FWER

Since cluster-based permutation tests provide only weak control
of FWER, it is not clear how likely they are to falsely declare
individual tests significant when some null hypotheses are actu-

ally false (i.e., there is one or more effect in the data). Our sim-
ulations found that the permissiveness of the maximum cluster-
level mass statistic is comparable to or better than the other

methods investigated here when this is the case. Moreover, like
Maris and Oostenveld (2007), we found that the cluster-based
test was the best of all the procedures we compared at detecting

broadly distributed effects. This power, though, comes at the cost
of a pronounced insensitivity to very focally distributed effects.
Thus, the cluster-based test is probably the best suited for mass
univariate analysis of ERP/ERF data when one is not interested

in potentially very focally distributed effects, unless one needs to
be certain as to the reliability of every single test result (i.e., one
needs strong control of FWER).

Permissiveness and Power of Permutation-Based Strong Control

of FWER and GFWER

Of the methods studied herein, the procedures that provide the
greatest certainty as to the significance of any single test result are

permutation-based control of FWER and GFWER. Again,
strong control of FWER provides the same degree of certainty
that any single test result is significant as Bonferroni correction or

an a priori selective test.GFWERcontrol provides somewhat less
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7. The worst potential failure of FDR control (by any of the FDR
methods studied here) that we know of is the aforementioned simulation
study by Lage-Castellanos et al., which found that the BH procedure
produced an FDR of 9.7% when the nominal rate was 5%. As already
mentioned, though, (see Previous Work on FDR Permissiveness), it is
impossible to judge the accuracy of this result.



certainty since it allows up to a certain number of false discoveries
with a specified likelihood. This greater uncertainty of GFWER
control can be problematic when the number of truly false null

hypotheses is small relative to the number of allowed false dis-
coveries as it will result in a high proportion of false discoveries
(e.g., Figures 4 & 6).

Like Hemmelmann et al. (2005), we found that permutation-
test based strong control of FWER and GFWER proved to be
the most powerful methods when only a very small proportion of

null hypotheses are false. This is due to the fact that these meth-
ods exploit the correlations between tests (unlike FDR proce-
dures and Bonferroni correction) and are not biased towards
detecting only broadly distributed effects (unlike cluster-based

tests). TheGFWERprocedure, with one false discovery allowed,
proved to be only slightly more sensitive than strong FWER
control. It is not clear if this increased power is worth the extra

uncertainty of the GFWER procedure. However, if theGFWER
procedure were allowed to make more false discoveries (e.g.,
2FHemmelmann et al., 2005), its relative increase in power

would improve. In light of this, the strong FWER permutation
test procedure is probably the bestmethod to use when one needs
to be certain of the reliability of any single test result (e.g., as-

sessing the lower bounds on effect onsetFGroppe et al., 2010;
Hillyard et al., 1973; Johnson & Olshausen, 2003), or one sus-
pects that only a small proportion of null hypotheses is false.
GFWER control is most useful when one has some idea as to

howmany null hypotheses to expect and strong FWER control is
unlikely to be sufficiently powerful.

Conclusion

Given their minimal a priori assumptions and high temporal and

spatial resolution, mass univariate analysis is a useful addition to

the standard statistics toolbox of the ERP/ERF methodology.
A key parameter of a mass univariate analysis is the choice of
multiple comparison correction procedure. The simulation re-

sults reported here suggest that all of the six popular methods we
investigated perform accurately when applied to conventional
ERP/ERF analysis and are not prone to alarmingly high

proportions of false discoveries. Thus, these procedures appear
to be generally valid for ERP/ERF analysis though some
care must be taken when applying them to independent samples

comparisons to avoid mistaking differences in variance for
differences in means.

These results also illustrate various trade-offs that the differ-
ent methods make as to the type of effects they are best suited to

detect and the degree of certainty they provide as to the signifi-
cance of any single test result. The circumstances in which these
procedures appear to be best suited are summarized in Table 2 of

the companion article to this paper (Groppe et al., 2011). These
simulation results will help investigators understand which
method best fits their particular needs and to better interpret

such analyses. If researchers would like additional background
and explanation on how these procedures work, the companion
article provides a tutorial review of these methods (Groppe et al.,

2011). In addition, to help researchers apply these methods to
their own data, we have provided freely available MATLAB
software, called the ‘‘Mass Univariate ERP Toolbox.’’ The soft-
ware is compatible with the EEGLAB toolbox (Delorme &

Makeig, 2004) as well as the ERPLAB toolbox (http://erpin-
fo.org/erplab). The software, software documentation, and a
tutorial are available on the toolbox wiki (http://openwet-

ware.org/wiki/Mass_Univariate_ERP_Toolbox). The EEG-
LAB toolbox and FieldTrip (Oostenveld, Fries, Maris, &
Schoffelen, 2011)MATLAB software packages implement some

of these procedures as well.
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