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Abstract

ERP averaging is an extraordinarily successful method, but can only be applied to a limited range of experimental
designs. We introduce the regression-based rERP framework, which extends ERP averaging to handle arbitrary
combinations of categorical and continuous covariates, partial confounding, nonlinear effects, and overlapping
responses to distinct events, all within a single unified system. rERPs enable a richer variety of paradigms (including
high-N naturalistic designs) while preserving the advantages of traditional ERPs. This article provides an accessible
introduction to what rERPs are, why they are useful, how they are computed, and when we should expect them to be
effective, particularly in cases of partial confounding. A companion article discusses how nonlinear effects and
overlap correction can be handled within this framework, as well as practical considerations around baselining,
filtering, statistical testing, and artifact rejection. Free software implementing these techniques is available.

Descriptors: Other, Language/Speech, Normal volunteers, EEG/ERP

Electroencephalogram (EEG) recorded at the scalp measures activ-
ity from many different parts of the brain, as well as various non-
brain artifacts. Only a small portion of this summed activity
reflects processing related to any particular task, and so analyzing
and interpreting these data requires a mechanism to isolate the
task-related “signal” from the unrelated “noise.” One strategy is to
estimate the event-related potential (ERP), that is, the portion of
the EEG signal that is consistently present across trials and time-
locked to some event of interest; the usual method for performing
this estimation is to extract time-locked epochs from the continuous
EEG signal, align them, and compute their point-by-point average.
This technique has compelling advantages. It produces detailed
waveforms that give a millisecond by millisecond trace of how
processing evolves at each electrode across each condition, and has
a long track record of effectively producing insight into the dynam-
ics of neural processing. The resulting body of literature provides a
critical source of comparisons for interpreting new results, and has
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produced a large stock of carefully characterized components such
as the P300, N400, etc., which can be used as dependent measures
in further experiments. This success also has led to a family of
analogous techniques for analyzing related signals: the event-
related magnetic field (ERF), event-related spectral perturbation
(ERSP; Makeig, 1993), event-related optical signal (EROS; Grat-
ton & Fabiani, 1998), etc., with similar advantages.

However, these techniques also share the primary disadvantage
of traditional ERP estimation, which is that the averaging technique
places limitations on experimental design: for optimal results, stim-
uli must be chosen to fall into a small set of discrete categories,
and these categories must be carefully controlled to ensure that all
other stimulus properties that might affect neural processing are
held constant. Furthermore, if multiple events occur in close tem-
poral proximity, the ERPs time-locked to each will generally over-
lap in both the EEG signal and the resulting ERP estimates,
making it difficult to determine which portions of the final wave-
form are attributable to which event.

These are not merely theoretical problems. For example, in our
subfield of language comprehension, the stimuli—words—neces-
sarily vary along a large number of continuous and confounded
dimensions (Cutler, 1981). In this domain, stimuli can never be
chosen to fully avoid confounding, and attempting to do so leads to
the use of nonrepresentative materials. Handling continuous dimen-
sions requires dichotimization, which wastes data and prevents the
use of potentially more powerful continuous parametric designs
(Baayen, 2004, 2010; Cohen, 1983). In reading paradigms using
rapid serial visual presentation (RSVP), the problem of overlap
may motivate the use of presentation rates that are well below natu-
ral reading speeds (Dambacher etal., 2012); in auditory speech
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comprehension, the confounding and overlap problems are even
worse, and these difficulties may contribute to a relative paucity of
auditory language ERP studies, even though EEG is one of the
only available dependent measures for probing the time course of
auditory comprehension. In the behavioral literature, recent years
have seen an increasing number of studies based on behavioral cor-
pora, which provide a valuable complement to factorial designs by
trading off a priori control of confounds to achieve much larger
sample sizes and increased naturalism (e.g., Boston, Hale, Kliegl,
Patil, & Vasishth, 2008; Demberg & Keller, 2008; Kliegl, Nuth-
mann, & Engbert, 2006). Such studies can potentially allow for the
measurement of detailed quantitative effects that are beyond the
reach of smaller, designed studies (New, Ferrand, Pallier, & Brys-
baert, 2006; Smith & Levy, 2013), but these analyses rely crucially
on statistical methods for post hoc control of confounding, which
traditional ERP averaging cannot provide.

The challenge, then, is to preserve the advantages of ERP-like
methods while relaxing their limitations. A number of alternatives
to ERP averaging have been proposed to solve one or another of
these problems, but taking advantage of these newer techniques
requires the potential user to understand and navigate a complex
set of tradeoffs. “ERP images,” for example, allow one to visualize
the effect of a continuous covariate such as reaction time on the
ERP, but can handle only one such covariate at a time, and have no
way to control for confounding (Jung etal., 2001; Lorig & Urbach,
1995). A number of studies have used multiple regression to ana-
lyze the average amplitude of the EEG extracted from a window
from either single trials (Amsel, 2011; Dambacher, Kliegl, Hof-
mann, & Jacobs, 2006; Frank, Otten, Galli, & Vigliocco, 2013;
Groppe etal., 2010) or single-item ERPs (Laszlo & Federmeier,
2011, 2014); this technique naturally allows post hoc control of
multiple simultaneous discrete and continuous covariates, but the
need for prespecified analysis windows means that it cannot pro-
duce the temporally detailed waveforms that are one of the primary
attractions of ERP analysis. A more promising approach is to cal-
culate a separate regression model at each possible latency, similar
to the mass univariate techniques used in PET/fMRI analysis, var-
iations of which have been proposed by multiple groups under dif-
ferent names: the event-related regression coefficient (ERRC;
Hauk, Davis, Ford, Pulvermiiller, & Marslen-Wilson, 2006; Hauk,
Pulvermuller, Ford, Marslen-Wilson, & Davis, 2009; Miozzo, Pul-
vermiller, & Hauk, 2014), general linear model (GLM) analysis
(Rousselet, Pernet, Bennett, & Sekuler, 2008; Rousselet etal.,
2009, 2010; Pernet, Chauveau, Gaspar, & Rousselet, 2011), corre-
lational analysis (Ettinger, Linzen, & Marantz, 2014; Solomyak &
Marantz, 2009, 2010), or no name at all (Amsel, 2011); a closely
related proposal is to analyze EEG via nonparametric regression
based on generalized additive models (Hendrix, 2009; Hendrix,
Bolger, & Baayen, 2014; Kryuchkova, Tucker, Wurm, & Baayen,
2012; Tremblay, 2009; Tremblay & Baayen, 2010). These
approaches can naturally handle multiple covariates while still pro-
viding information on the time course of effects, but have no provi-
sion for handling overlap correction. Meanwhile, the ADJAR
technique (Woldorff, 1993) does allow for a limited form of over-
lap correction, but it requires the user to make complex heuristic
judgments, and applies only to classic categorical ERPs. And all of
these approaches face the hurdle of convincing potential users to
either give up or somehow adapt the large existing comparative lit-
erature, “componentology,” and store of experience and lore that
practitioners have accumulated around ERPs.

In this article and its companion, we introduce a regression-
based framework for estimating ERPs—the rERP framework for
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short. However, our goal is not to give experimenters yet another
ERP alternative to choose from. Nor is our goal to get rid of
ERPs—quite the opposite. Instead, we start from the well-known
observation that averaging is a special case of least squares linear
regression, and use this to extend traditional ERP estimation to
handle a much broader range of analysis problems in a unified
way. The rERP framework provides a single method for estimating
ERP waveforms that works whether the design is factorial or con-
tinuous or both, whether it is orthogonal or partially confounded,
whether the continuous covariates have linear or nonlinear effects,
and whether the events of interest produce overlapping ERPs or
not. In the simplest case—a categorical design with no overlap cor-
rection—then the rERP estimates we obtain will be mathematically
identical to those produced by traditional averaging. This makes it
trivial to carry over previous ERP results to rERP: all ERPs
are TERPs.

But rERPs are also flexible enough to handle complex cases
where traditional ERP averaging does not apply. In fact, it turns
out that every ERP alternative mentioned above, or a close ana-
logue, also falls out naturally as a special case of the rERP
approach. Thus, one of our key contributions is to demonstrate that
the apparent complexity in this literature is largely illusory: there’s
no need to separately learn five or more distinct methods, because
the rTERP framework encompasses and unifies them all. rERPs
aren’t magic: disentangling confounded covariates, for example,
may require more data than would be required if they were orthog-
onal. But if there is a mild violation of the ERP assumptions—for
example, a poorly controlled nuisance variable that is correlated
with our variable of interest—then we can statistically control for
that nuisance variable while calculating what is otherwise a tradi-
tional ERP waveform. And the use of a unified framework allows
us to straightforwardly handle even the most complex situations.
For example, previously, if one wished to use an ERP image to
obtain a detailed picture of a continuous covariate’s effect, one
could not also correct for overlap, or use multiple regression to dis-
entangle the simultaneous effects of multiple covariates. But in the
rERP framework, we can mix and match all the different aspects as
appropriate to the situation, and import new ideas from the regres-
sion literature as needed. And, because these different options fit
together into a single system, it becomes easier to articulate and
reason about the trade-offs and relationships between different ana-
Iytic approaches. Finally, we note that, while we will focus our pre-
sentation here exclusively on EEG/ERP analysis, the approach
generalizes directly to related modalities, producing rERFs, rERSP,
rEROS, etc.

The remainder of this article is structured as follows. We first
review the theoretical motivation underlying the traditional averag-
ing approach, and show that the same motivations lead naturally to
a specific way of applying least squares regression. Since regres-
sion is so well studied, this unlocks a vast literature of tricks and
techniques that can then be applied directly to ERP estimation. To
aid in making this mapping, we next work through several exam-
ples with a simple experimental design, both to illustrate the princi-
ples of rERP analysis and to show how the ideas and terminology
of ERPs correspond to those used in the regression literature.
Finally, we provide a detailed discussion of how regression can
(sometimes) disentangle the effects of partially confounded factors,
and the trade-offs involved in choosing between the complex
designs that our technique makes available. A companion article
builds on this foundation to discuss two more sophisticated applica-
tions of the framework—the use of spline regression (a generaliza-
tion of both dichotimization and ERP images) to measure nonlinear
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effects of continuous predictors, and a technique for correctly esti-
mating ERPs in the presence of overlap—as well as ancillary practi-
cal considerations such as baselining, filtering, significance testing,
and artifact rejection. A list of free software packages implementing
these methods is available at http://vorpus.org/rERP.

ERP Averaging Is Least Squares Regression

ERP analysis starts from the assumption that whenever a particular
type of event occurs (e.g., a stimulus appears on a display), then the
brain produces a fixed pattern of neural activity—the ERP itself—
that is time-locked to that event.! Here, we consider how to derive a
method for estimating such an ERP from data, starting from first
principles, and then show how the same principles lead to rERP
analysis. To reduce confusion, in this section we’ll be careful to say
ERP estimate when referring to any estimate based on data, and say
ERP alone only when referring to the postulated underlying brain
activity that we hope our estimates will approximate.

In an ideal world, we could just present our stimulus once,
record the resulting brain activity, and be done. But reality, of
course, is never that simple. There is always a great deal of other
ongoing neural activity that doesn’t care about our experimental
manipulation at all (or if it does care, then not in a way that
matches the assumptions of ERP analysis), which means that what
we actually measure on any single trial will be the sum of the ERP
activity and this background activity. So, given that we can’t mea-
sure the ERP directly, how can we estimate it from the data that we
can measure?

Instead of trying to estimate the whole waveform at once, we
start by working out how to estimate the value of the ERP at one
single electrode and latency—for example, 136 ms postevent at
electrode Cz. (If we can do this, then we can estimate the rest of
the ERP by just repeating our technique at every electrode and
latency.) This means the value we’re trying to estimate is just a sin-
gle number, which we call B (pronounced beta). To estimate 3, we
use the measurements we’ve made of the scalp potential at 136 ms
postevent, at Cz, on many trials—this is a list of numbers, which
we call y1, ¥2, ¥3, ... , ¥, And our assumption is that the physical
process that produced these numbers was the summation of the true
ERP plus each trial’s background “noise.” So, we can write the
relationships between the different numbers involved here as:

y1=P+noise;

Y= +noise;

y,=B+noise,

1. This assumption may or may not be an accurate description of the
underlying neural processes in any particular case, and a number of
alternative mechanisms have been proposed (Burgess, 2012; Nikulin
etal., 2007; Sauseng etal., 2007). For our current purposes, this doesn’t
really matter; our goal here is to use this assumption to derive a useful
method, and the empirical success of the ERP averaging technique dem-
onstrates that this assumption can lead to useful analyses regardless of
its objective truth. TERP analysis, being an extension of ERP analysis,
starts from the same assumption, and will turn out to have similar prop-
erties (i.e., any pattern of neural activity that can be picked up by aver-
aging can also be picked up by rERP, whether or not it arises from a
“true” evoked potential).
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Or, for short, we write
yi=B+noise;

Notice that on every trial, the value of the noise (at this latency
and electrode) is different, but the value of the ERP (at this latency
and electrode) is always the same.

At this point, most ERP texts would suggest that we just esti-
mate 3 by taking the average of the y; values. But why, mathemati-
cally, is that a good idea?

We know the values of y;, but not B or noise;. If we knew what
noise; was on each trial, we could solve for 3 using algebra. Con-
trariwise, given any estimate of 3, we could solve for the estimated
pertrial noise: y; — 3 = noise;. Because we know neither, we need
some other strategy, and the oldest, simplest, and most widely stud-
ied strategy for solving such problems is the principle of least
squares. This principle says that we should choose our estimate of
3 to be the number that makes our estimate for the total squared
noise,

n

squared noise=Z:?:l (noisei)2=z (yi—B)*

as small as possible. To minimize this formula, we first take the
derivative:

i=1

n

d ) d ~—n
%squared noise= %Zl_ﬂ (y,~—[3)2=zl_=1 —2(yi—B)-

Then, we set it equal to zero:

D ~20iB)=0

And finally we solve for 3:

=2(> vi=> B|=0

i=1 i=1

iy:’:iﬁ

i=1 i=1

> vi=np

i=1

%ZYI:B

i=1

Notice that this final formula turns out to be the standard for-
mula for calculating the mean. This means that, according to the
least squares principle, the best way to estimate [3 is to take the
average of our measured values, y;, ..., y,. This is the reason
why using averaging to estimate ERPs makes sense in the first
place.

From Averaging to Regression

So, the traditional averaging method for estimating ERPs can be
justified as being the least squares solution to the equation

yi=B+noise;
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Now, notice that the above equation is just a simple example of the
general least squares linear regression formula:

Yi=PBx1;+Byx2+ - - +noise;

What happens if we estimate ERPs using full-fledged linear regres-
sion, instead of the simplified version?

Just as before, the y; values are set to the measured scalp poten-
tial at a single electrode, at a single latency, across different time-
locked trials. The xj; values (the predictors) are set to indicate vari-
ous properties of the stimulus presented on trial i, coded numeri-
cally. (The original ERP equation that we derived above effectively
has a single predictor, x;, whose value is always 1. We can think of
this as a particularly vague property that simply indicates that there
was an event.) And, once we’ve measured the y; values and specified
the xj; values, we again use the principle of least squares to find
those values for 3, o, ... that together minimize the total squared
noise. Each 3 value then gives an estimate of some portion of the
ERP at this electrode and latency. Alternatively, given the properties
of any particular stimulus i, we can compute the sum
Byx1;+Byxzi+ - -+, which we call the model’s prediction of the ERP
to a stimulus with these properties at this latency.

Actually finding the 3 values that satisfy the least squares
principle is somewhat more complicated than just taking the
average, but not by much, and there are standard techniques that
allow computers to accomplish this quickly and reliably. We
then repeat these calculations many times, once for each elec-
trode and latency—the whole process takes a few tens of milli-
seconds on a modern computer. As we do, we keep the same
xs—since these represent properties of the event that each trial
is time-locked to, which do not vary across electrodes or laten-
cies—but swap out the y values to represent the measurements
made at each electrode and latency across our different trials.
Finally, we gather up all the computed 3; values to make one
waveform, all the (3, values to make a second waveform, and so
on for all of the Bs. The resulting waveforms can then be plot-
ted, smoothed, entered into statistical analysis, have amplitude
and latency measures extracted, and generally be treated exactly
as if they were ERP waveform estimates obtained via averaging.
Likewise, we can combine s together to compute the predicted
waveforms for particular stimuli, and these predictions can also
be analyzed like ERP estimates obtained from averaging. To
remind ourselves that our waveforms were estimated using
regression instead of averaging, we call them rERPs.”

2. Previous authors have argued for an analogy between regression
coefficients and classic ERP averages on the grounds that both can be
computed by taking certain weighted sums of the input data (Hauk etal.,
2006, 2009; Miozzo etal., 2014). This is true, but it leaves important
questions unanswered. There are many ways of weighting the input data
so that their sum does not produce any useful value, which means there
must be something special about the particular weights that are used in
regression and in averaging. What’s so special about these weights, and
how do regression weights relate to the more familiar averaging weights?
If we focus on weighted sums, these questions are difficult to answer
because, for regression, the weights have no intuitive relationship to the
original experimental design: they are the output of a rather opaque calcu-
lation (and in efficient implementations may not be explicitly computed
at all). But if we stop worrying about weighted sums and instead observe
that at a high level these techniques both select their weights so as to find
the unique, best-possible estimate (in the least squares sense) of an under-
lying ERP signal buried in noise, then the connection between averaging
and regression immediately becomes clear, along with the implication
that in the cases where both techniques are applicable they will end up
using identical weights to produce identical results.
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Defining Predictors for rERP Analysis

While rERPs can be treated much like traditional ERP estimates,
they do require an important shift in our perspective. Many of us
are used to solving data analysis problems by reasoning out which
sequence of operations we should apply to our data to achieve our
desired result: first dividing into bins, then averaging, then subtract-
ing to create difference waves, etc. When we are then confronted
with a new problem (e.g., correcting for a partially confounded
variable), it’s natural to try to find a solution along similar lines
(e.g., estimating some sort of correction factor and then subtracting
it out). But in the regression framework, this is not the most pro-
ductive approach. Instead, we focus on deciding which set of pre-
dictors can be used to best characterize our events; the least
squares program will then take care of automatically deriving the
optimal data processing method from this description. Going from
averaging to regression is like going through the looking glass: our
standard ERP techniques turn out to have perfect analogues in
standard regression techniques, but the terminology and framing
are quite different.

This section acts as an introduction to the looking glass world
and its correspondences to the familiar ERP world, giving a step-
by-step examination of standard ways of setting up rERP predictors
to handle factorial, continuous, and combined designs.

We use examples and data drawn from a published experiment
by DeLong, Urbach, and Kutas (2005). This is a language compre-
hension experiment that created contexts in which participants had
a graded expectation for either the word a or the word an, such as
The day was breezy so the boy went outside to fly (a kitelan air-
plane). Thus, our example design has one categorical covariate—
word identity, @ versus an—and one continuous covariate—word
expectancy, which falls between 0 and 1.

The Traditional ERP as an Intercept Term

The simplest example is the one we have already seen. Suppose we
define just a single predictor as

xh:l

In linear regression terminology, this predictor is known as an
intercept term. Then, our regression equation is

yi=PBx);+noise; =, +noise;

and, as we saw above, when we find the least squares solution, [3;
will end up equal to the mean of the y; values (Figure 1a).

Therefore, this is not only a legitimate method for estimating
the activity time-locked to some event, but it produces results that
are identical to the conventional averaging technique. However, it
is somewhat cumbersome to use, because if we have categorical
factors with multiple levels, then it requires us to fit two different
models: one on the « trials, and another on the an trials.

Multiple ERPs Via Dummy Coding

Instead of fitting multiple models, we can estimate both ERPs at
once within a single regression model by using a trick known as
dummy coding, which is one of the standard ways to handle
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Figure 1. The relationship between xs (predictors), [ coefficients
(rERPs), and predicted ERPs, for various stimuli and models. Wave-
forms shown are unsmoothed grand-average rERPs fit to data from
DeLong etal. (2005). a: Intercept-only models fitted to subsets of the
data. b: Dummy coding. c: Treatment coding.

categorical variables within regression models.®> If we define two
different predictors, like so:

1, if stimulus i is a
X1i=
0, if stimulus i is an

0, if stimulus i is a
X2i =

—_—

, if stimulus 7 is an
and then plug them into the standard regression equation:
vi=Bx1;+B,x2 tnoise;
then least squares fitting will set 3, to the average of the a trials,
and (3, to the average of the an trials (Figure 1b).
It’s easy to see why this happens. If on trial i/, we displayed the
word a, then x;; is 1 and x,; is 0, so we have

yi=PB; X1+B,X0+noise;=[3; +noise;

Or, if on trial i, we displayed an, then xy; is 0 and x,; is 1, so we
have

vi=B; X0+ B, X 1+noise; =, +noise;

3. This is the default method of coding categorical variables used by
SAS, and is also used by default by R for models that do not contain an
intercept term.
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So effectively we end up fitting two copies of our previous
intercept-only model on two different subsets of the data. The only
difference from the previous example is that, before, we did this by
explicitly dividing our data into subsets; now, we just define our xs
and the appropriate data splitting happens automatically as a result
of the least squares fitting process. A generalized version of this
“zero trick” can be used to combine arbitrary regression models
into a single fit, and we’ll see later that this is useful for several dif-
ferent purposes.

Difference ERPs Via Treatment Coding

However, a more common method for handling categorical varia-
bles in regression is by treatment coding.* This consists of dummy-
coding all but one of the levels of our factor (we refer to the level
that’s left out as the reference level), and then adding an intercept
term. For example, taking the @ stimuli as our reference level, we
have:

0, if stimulusiis a
x;=1, Xpi= o .
1, if stimulus i is an

With this coding scheme, least squares fitting will set 3; to the
average of the a trials, and [3, to the difference between the an tri-
als and the a trials, that is, 3, will be a conventional difference
ERP (Figure 1c). This is why the regression literature calls this
treatment coding: if you choose a control condition for your refer-
ence level, and then apply various “treatments” on top of it, then
the resulting Bs show you how these treatments change the ERP
response versus the control.

This also illustrates a very important aspect of interpreting
regression formulas, which is that the fitted value of each f;
depends not just on how we defined the jth predictor, but on a/l the
predictors, Xy, . . . , X,; This example and the previous one used the
same definition for x,;, and only changed xy;; but the result was that
B, stayed the same, while B, changed completely.” Likewise, we
saw above that, if all we have is an intercept, then the correspond-
ing B will give the grand mean of all our data, but here it gives the
mean of the @ stimuli only. This behavior can be quite confusing
when first encountered.

The key to interpreting the 3 values produced by these mod-
els—and thus to interpreting rERP waveforms in general—is to
remember that the least squares fitting process does not care about
the (3 values directly. It only cares about the predicted values (the
rightmost column in Figure 1). It will pick whichever 3 values
make these predictions match the data as closely as possible. Since
the predictions are created by combining multiple (3 values
together, this means that the chosen (3 values are not the ones that
individually match the data best, but the ones that are most effec-
tive at working together. In the treatment coding case, (3; must
work alone to match the @ stimuli, while for the an stimuli, 3; and
B, work together; so the most effective teamwork is achieved

4. This is the default method of coding categorical variables in R and
SPSS.

5. This is also why we prefer the name treatment coding for this par-
ticular coding scheme, even though SPSS and many references refer to
it as, simply, dummy coding. Using 0/1 dummy coding for some levels
of a factor can produce very different results depending on how other
levels are coded, making the name ambiguous; treatment coding refers
specifically to this scheme combining an intercept term with dummy
coding for all but one level.
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when 3; focuses on matching the a stimuli while 3, focuses on
correcting [3; so that their combination will match the an stimuli.
And this teamwork will turn out to be the essential feature that
allows regression to handle confounding, nonlinear effects, and
overlap correction.

But it also creates a potential problem for some coding
schemes that might otherwise seem reasonable: those in which sev-
eral predictors are perfectly collinear, that is, redundant.

Examples of this would be if we accidentally entered the same
predictor twice, if we left some cell out of our design, or, less obvi-
ously, if we used our original simple dummy coding scheme, but
for two different factors at once. For instance, pretend that some-
times in this experiment the critical items were displayed in
UPPERCASE. Then, we could define four dummy-coded

predictors:
1, if stimulus i is a
Xi= o e ..
0, if stimulus i is an
0, if stimulus i is a
x21: . . ..
1, if stimulus i is an
1, if stimulus i is lowercase
X3i=
0, if stimulus i/ is UPPERCASE
0, if stimulus i is lowercase
X4 =

if stimulus i is UPPERCASE

... but we probably don’t want to do this. Suppose that there is
some component, say the N1, which is identical between all four
conditions. Then, one way the Bs could work together to capture
this effect would be to say that @ and an are both associated with
an N1, and put the N1’s deflection into the 3; and 3, waveforms.
Another way to explain it would be to say that the N1 is triggered
by both uppercase and lowercase words, and let the 5 and B4
waveforms take care of it. Or maybe a and an both trigger a posi-
tivity during this window, but uppercaseness and lowercaseness
both generate an even greater negativity, which cancels it out—that
would also be consistent with the data. Because all these combina-
tions of B values ultimately lead to the same predictions, least
squares fitting has no way to choose among them.

Some regression software, when confronted with this situa-
tion, will respond by silently and semiarbitrarily picking one of
the equivalent and equally-best combinations of 3 values. This
can produce valid results, but only if we are careful to remember
not to try to interpret the 3 values directly, and look only at the
predicted values and their so-called valid contrasts. This
approach is ubiquitous in the fMRI literature using GLM analy-
sis, but for ERP analysis—where the 3 values are so directly
linked to the actual target of the analysis, and where understand-
ing the Bs is the simplest method to understand exactly what
assumptions the model makes about how the ERP waveform can
vary across conditions—we recommend the use of nonredundant
models with interpretable (3s.

Fortunately, treatment coding always allows categorical vari-
ables and their interactions to be straightforwardly coded in a
nonredundant way. (In fact, the regression literature usually
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presents this as a primary motivation for using treatment coding
or related schemes.) For example, applying treatment coding to
our uppercase/lowercase analysis gives a nonredundant set of
predictors:

0, if stimulus i is a

X1i— 1
-XZI: . . ..
1, if stimulus i is an
{0, if stimulus i is lowercase
X3i=

1, if stimulus i is U