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ABSTRACT 

Uncanny valley refers to humans’ negative reaction to almost-but-not-quite-human 

agents. Theoretical work proposes prediction violation as an explanation for uncanny 

valley but no empirical work has directly tested it. Here, we provide evidence that 

supports this theory using event-related brain potential recordings from the human scalp. 

Human subjects were presented images and videos of three agents as EEG was recorded: 

a real human, a mechanical robot, and a realistic robot in between. The real human and 

the mechanical robot had congruent appearance and motion whereas the realistic robot 

had incongruent appearance and motion. We hypothesize that the appearance of the agent 

would provide a context to predict her movement, and accordingly the perception of the 

realistic robot would elicit an N400 effect indicating the violation of predictions, whereas 

the human and the mechanical robot would not. Our data confirmed this hypothesis 
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suggesting that uncanny valley could be explained by violation of one’s predictions about 

human norms when encountered with realistic but artificial human forms. Importantly, 

our results implicate that the mechanisms underlying perception of other individuals in 

our environment are predictive in nature.  
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1. INTRODUCTION 

Our social milieu has changed tremendously in recent years, exposing us to social 

partners that are dramatically different from those the human brain has evolved with over 

many generations. Specifically, from guiding students in learning math and science, to 

helping children with autism and stroke survivors in their exercises, artificial human 

forms such as robots are rapidly becoming participants in our lives. The introduction of 

such artificial forms into our lives has in turn allowed us to study the fundamentals of 

human social cognition, similar to the use of artificial stimuli to learn about the 

fundamentals of human perception (Gregory, 1980; Rust and Movshon, 2005).  

Uncanny valley is a phenomenon that refers to humans’ response to artificial 

human forms, which possess almost human-like characteristics. In describing the 

phenomenon, Mori (1970), who introduced the term, proposes that the relationship 

between humanlikeness and humans’ response to non-human agents is not a linear one. 

According to his framework, the increasing humanlikeness of an agent elicits positive 

responses from humans only up to a certain point, where increasing humanlikeness 

begins to elicit negative responses, thereby forming a deep valley (Figure 1). 
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Furthermore, it has been suggested that if the agent is moving, the responses will be more 

pronounced compared to the static form of the agent. Behavioral studies with humans 

have provided empirical evidence for the hypothetical curve in Figure 1 (MacDorman et 

al. 2009; Thompson et al., 2011; Matsuda et al., 2012; Poliakoff et al. 2013; Cheetham et 

al. 2013; Piwek et al. 2014; Macdorman and Chattopadhyay, 2016), and studies with non-

human primates suggest that it has evolutionary origins (Steckenfinger and Ghazanfar, 

2009).  

There are several theories that attempt to explain uncanny valley including 

disease or threat avoidance and mate selection (Macdorman et al., 2009) but these 

theories lack the potential for scientific testability and are short on providing a 

mechanistic account of the phenomenon. One other hypothetical mechanism is Bayesian 

estimation or predictive coding, which is linked to a more general description of neural 

computational properties of the brain (Rao and Ballard, 1999; Friston, 2010, Moore, 

2012), and therefore is a scientifically testable framework. According to predictive 

coding, the uncanny valley is related to violation of expectations in neural computing 

when the brain encounters almost-but-not-quite-human agents. A growing body of work 

has associated Mori’s hypothetical curve to the processing of conflicting perceptual or 

cognitive cues, in which the stimuli are compatible with the elicited expectations or are in 

violation of them (Ho and MacDorman, 2008; Yamamoto et al., 2009; Mitchell et al., 

2011; Cheetham et al., 2011; Saygin et al., 2012; Nie et al., 2012 Cheetham et al., 2013).  

Here, we tested the predictive coding theory and its application in action 

perception (Kilner et al., 2007; Friston, 2010) as an underlying mechanism for uncanny 

valley. Accordingly, we hypothesize that upon exposure to a human-like form, our brains 
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predict human-like behavior, in specific human-like (biological) movement based on life-

long experiences with conspecifics. Uncanny valley occurs when those predictions are 

not met, such as when faced with agents having human-like forms but non-human-like 

movements, a hypothesis that has been postulated by Saygin et al. (2012) previously. No 

empirical work to date has directly tested this theory of prediction violation.  

In the present study, we used well-controlled stimuli, which did and did not 

violate appearance-motion predictions, together with electroencephalography (EEG) and 

a remarkable biomarker of human information processing, the event-related brain 

potential (ERP) N400 component to directly test this theory. N400 is the human brain’s 

response to any meaningful stimulus. It is a negative-going event-related brain potential, 

which peaks around 400 ms after stimulus onset and is maximal in fronto-central regions 

of the human scalp to pictorial stimuli (Kutas and Federmeier, 2011). Its amplitude is 

relatively greater for items that violate one’s predictions than for items that do not. Thus, 

it has been linked to the pre-activation of semantic knowledge during comprehension of 

meaningful stimuli including meaningful actions (Kutas and Federmeier, 2011; Amoruso 

et al. 2013).  

We presented agents of varying humanlikeness in static and dynamic forms as 

EEG was recorded from human subjects. The stimuli consisted of a real human agent 

with human-like appearance and motion (Human), a realistic robot agent with human-like 

appearance and non-human-like motion (Android), and a mechanical robot with non-

human-like appearance and motion (Robot) (Figure 2A). In this stimuli set, the real and 

mechanical agents (Human and Robot) had congruent appearance and motion whereas 

the realistic agent (Android) had incongruent appearance and motion. In this setting, the 



 

 5 

appearance of the agent provides a context for the subsequent perception of the agent and 

activates world-knowledge (Metusalem at al., 2012) about agents that have that type of 

appearance. We hypothesized that the realistic agent (Android) would elicit a greater 

N400 response in dynamic form than the static form as its human-like appearance would 

lead to the prediction that it would move in a human-like way based on our world-

knowledge but when it did not, it would violate that prediction. On the other hand, we 

hypothesized that the N400 amplitude for the static and dynamic forms would not differ 

for Human and Robot since both possess appearance-motion congruence (Human looks 

human-like, moves in a human-like way; Robot looks non-human-like, moves in a non-

human way). Such a pattern of activity would provide direct empirical evidence for the 

prediction violation theory of uncanny valley. 

 

2. MATERIALS AND METHODS: 

2.1 Participants 

Twenty right-handed adults (10 females; mean age = 23.8; SD = 4.8) from the 

student community at University of California, San Diego participated in the study. They 

had normal or corrected-to-normal vision, and no history of neurological disorders. 

Informed consent was obtained in accordance with the university’s Human Research 

Protections Program. Participants were paid $8 per hour or received course credit. One 

subject’s data was excluded due to high noise during EEG recording. 

 

2.2 Stimuli 
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Stimuli consisted of video clips of actions performed by the humanoid robot 

Repliee Q2 (in Robotic and Human-like appearance) and by the human ‘master’, after 

whom Repliee Q2 was modeled (Figure 2A, also see Saygin et al. 2012 and Urgen et al. 

2013 for details about the stimuli). We refer to these agents as the Robot, the Android 

(realistic robot), and the Human conditions. Note that the former two are in fact the same 

robot. Repliee Q2 has 42 degrees of freedom and can make face, head and upper body 

movements. However, the robot’s movements did not match the dynamics of biological 

motion; it is mechanical or “robotic”. The same body movements were videotaped in two 

appearance conditions. For the Robot condition, Repliee Q2’s surface elements were 

removed to reveal its wiring, metal arms and joints, etc. The silicone ‘skin’ on the hands 

and face and some of the fine hair around the face could not be removed but was covered. 

It is important to note that the movement kinematics of the Android condition was 

identical to that of the Robot. The silicone skin on the hand or face did not affect the 

movement kinematics for the Android condition since the performed actions largely 

included arm and upper torso movements rather than fine detailed finger movements of 

the hand or face, and the skin was only 1.5 mm and tightly attached to the hand or face. 

For the Human condition, the female adult whose face was molded and used in 

constructing Repliee Q2 was videotaped performing the same actions. She was asked to 

watch each of Repliee Q2’s actions and perform the same action naturally. All agents 

were videotaped in the same room with the same background. Video recordings were 

digitized, converted to grayscale and cropped to 400x400 pixels. Videos were clipped 

such that the motion of the agent began at the first frame of each video. 
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2.3 Procedure 

Since prior knowledge can affect judgments of artificial agents differentially 

(Saygin and Cicekli, 2002), each participant was given exactly the same introduction to 

the study and the same exposure to the videos. Before starting EEG recordings, 

participants were shown each video and told whether each agent was a human or a robot, 

and the name of the action. Participants went through a practice session before the 

experiment. EEG was recorded as participants watched the images or video clips of the 

three agents performing eight different upper body actions (drinking from a cup, 

examining an object with hand, handwaving, turning the body, wiping a table, nudging, 

introducing self, and throwing a piece of paper). The videos were presented in two modes 

that we call motion alone and still-then-motion. In the motion-alone condition, 2-second 

videos were presented. In the still-then-motion condition, the first frame of the video was 

presented for 600-1000 ms (with a uniform probability jitter), and then the full video was 

played. The experiment consisted of 15 blocks. In each block, the eight videos of each 

agent were presented once in the motion-alone condition, and once in the still-then-

motion condition. Stimuli were presented in a pseudo-randomized order ensuring that a 

video was not repeated on two consecutive trials. Each participant experienced a different 

pseudo-randomized stimuli sequence. 

Stimuli were displayed on a 19” Dell Trinitron CRT monitor at 90 Hz using 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). To prevent an augmented visual 

evoked potential at the beginning of video onset that might occlude subtle effects 

between conditions, we displayed a gray screen with a white fixation cross before the 

start of the video clip or still frame on each trial. Participants were instructed to fixate the 
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fixation cross at the center of the screen for 900-1200 ms (with a uniform probability 

jitter). A comprehension question was displayed every 6-10 trials, asking participants a 

true/false question about the action in the just seen video (e.g. Drinking?), after which 

they responded with a manual key press (Yes/No response). 

 

2.4 EEG Recording and Data Analysis 

EEG was recorded at 512 Hz from 64 ActiveTwo Ag/AgCl electrodes (Brain 

Vision, Inc.) following the International 10/20 system. The electrode-offset level was 

kept below 25 k-Ohm. Two additional electrodes were placed above and below the right 

eye to monitor oculomotor activity (1 additional electrode was placed on the forehead as 

a ground of the eye electrodes). The data were preprocessed with MATLAB and the 

EEGLAB toolbox (Delorme and Makeig, 2004). Each participant’s data were first high-

pass filtered at 1 Hz, low-pass filtered at 50 Hz, and re-referenced to average mastoid 

electrodes behind the right and left ear. Then the data were epoched ranging from 200 ms 

preceding video or first frame onset to 700 ms after video onset, and were time-locked to 

the onset of the video clips (motion-alone condition, see Procedures) or the first frame 

(still-then-motion condition, see Procedures) to compare the motion and still forms of the 

agents (we refer to these as motion and still conditions). Atypical epochs of 

electromyographic activity were removed from further analysis by semi-automated epoch 

rejection procedures (kurtosis and probability-based procedures with standard deviation = 

6). After preprocessing, grand average event-related brain potentials (ERP) and scalp 

topographies were computed and plotted for each condition using Brain Vision Analyzer. 

If our manuscript is accepted, we will share the data and the code used in the analysis. 
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2.5 Statistical Analysis 

The time window between 370-600 ms was considered for N400 analysis based 

on the grand average ERPs across all conditions. The area under curve measure was used 

to extract the N400 values for each agent under both motion and still condition for each 

subject in frontal channels (AF3, AFz, AF4, Fz, F1, F2, F3, F4, F5, F6) since N400 for 

pictorial stimuli has a more frontal distribution (Kutas and Federmeier, 2011). After 

preprocessing, data were exported to ERPLAB (http://erpinfo.org/erplab) and area under 

curve measures were extracted by using this toolbox. We then applied paired t-tests on 

the average frontal channel activity to compare the motion and still conditions for each 

agent (Robot, Android, Human). Since we expected motion condition to be greater than 

the still condition for Android (and no effect for Human and Robot), our t-tests were one-

tailed. Although our hypotheses were best addressed by pair-wise t-tests, we also 

included an omnibus 3x2 ANOVA with factors Agent (Robot, Android, Human) and 

Mode (Static, Dynamic) for completeness.  

 

2.6 Localization of EEG Activity 

For identifying the neural generators (sources) of the activity during the N400 

period, we used the LORETA method (Pascual-Marqui et al., 1994). LORETA estimates 

the distributed neural activity in the cortex based on the scalp measurements of ERP 

differences. Localization of the EEG activity was as follows: First, we computed the 

N400 differences between the static and motion conditions of each agent (Robot, 

Android, Human), and then we took the grand average of the N400 differences. We then 
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applied LORETA to the grand average N400 difference waveform using the template 

brain in the time interval between 370-600 ms to estimate the distributed neural activity 

underlying N400. 

 

3. RESULTS 

Our results indicate that observation of all agents elicited an N400 component 

regardless of the presentation mode (static or dynamic) at frontal sites (AF3, AFz, AF4, 

Fz, F1, F2, F3, F4, F5, F6) on the human scalp (Figure 2B shows ERPs on a 

representative frontal channel Fz). As predicted by our hypothesis, the amplitude of N400 

(measured with area under curve between 370-600 ms averaged across all frontal sites) in 

the dynamic form was significantly greater than the static form for Android (t(18) = 

2.401, p<0.05). On the other hand, the static and dynamic forms did not differ either for 

Robot (t(18) = 0.388) or for Human (t(18) = -0.346) (Figure 2B for ERPs, Figure 2C for 

bar graphs). Figure 3 shows the topography of the N400 effect on the scalp.  

Although our hypotheses were best tested with the pair-wise t-tests, for 

completeness we also reported the results of the omnibus ANOVA: The Agent x Mode 

ANOVA show a main effect of Agent (F(2,36) = 8.56, p<0.05), and a trend in the main 

effect of Mode (F(1,18) = 3.87, p = 0.06) and in the interaction of Agent x Mode (F(2,36) 

= 2.84, p = 0.07).  

Our source analysis with LORETA suggests that the generator of the N400 

component is a widely distributed network including the middle and superior temporal 

areas, temporal-parietal junction, and prefrontal areas (Figure 4). These areas align with 

the neural network that has been implicated for N400 with intracranial recordings and 
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MEG in humans (Kutas and Federmeier, 2011). The maximal source density of this 

network was identified as a region within the inferior parietal lobule (Brodman area 40; x 

= -59, y = -32, z = 29, MNI coordinates).  

 

4. DISCUSSION 

In conclusion, we aimed to “ground” uncanny valley, an esoteric yet compelling 

first-person experience, whose mechanisms are unknown, with an approach combining 

three “knowns”:  N400 (established dependent measure), controlled stimuli and 

experimental design, and a theory of neural computations. We offer direct empirical 

support for the prediction violation theory as an underlying mechanism for uncanny 

valley. In addition, with its excellent temporal resolution, EEG allowed us to characterize 

the time course of the activity that underlies the uncanny valley phenomenon. It seems 

that within 400 ms the brain has made predictions about the movement of the agent being 

observed, which in turn suggests that the mechanisms underlying perception of other 

individuals in our environment are predictive in nature. 

Our study demonstrates the benefit of using neural dependent measures in testing 

hypotheses about uncanny valley, whose underlying mechanism has remained unknown. 

Previous research on uncanny valley has mainly focused on behavioral ratings 

(MacDorman et al., 2009; Thompson et al., 2011; Poliakoff et al., 2013; Piwek et al., 

2014). While these efforts have been a good step to operationalize the uncanny valley, 

they fall short for a number of reasons. First, these studies usually ask for an explicit (or 

conscious) response such as humanlikeness, eeriness, or familiarity. However, explicit 

measures may be too restrictive or not be sufficient to characterize the reaction of the 
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human subjects for uncanny stimuli. Neuroimaging has the advantage to measure human 

responses implicitly without asking for a specific response. In the present study, N400 

was used as such an implicit measure. Second, behavioral measures provide only the 

output of the system, which is not very informative about the course of processing. 

Neuroimaging provides a rich set of data, and especially the temporally sensitive methods 

such as EEG allow one to monitor the information processing during stimulus 

presentation. In addition, the use of well-established dependent measures, such as N400 

in this study, help one to situate the uncanny valley in a well-studied cognitive domain. 

The use of event-related brain potentials in the current study provides a 

confirming evidence for a hypothesis that was proposed in our previous fMRI study of 

action perception that used the same stimuli. Saygin et al. (2012) found differential 

activity in parietal cortex for the android compared with the human and robot, which was 

interpreted as supporting evidence for the hypothesis that uncanny valley might occur 

due to the incongruity of appearance and motion in the action processing network. The 

N400 effect for the android we found in the present study corroborates this interpretation.  

The characteristics of the N400 component in the present study was consistent 

with those in the literature (Kutas and Federmeier, 2011). Not only the topography is the 

topography similar to the previous N400 studies with pictures and videos (Sitnikova et al. 

2008; Bach et al. 2009; Shibata et al. 2009; Proverbia and Riva, 2009), but the estimated 

neural generators of the N400 effect were consistent with previous reports. Our source 

analysis with LORETA (data not shown) confirmed that the N400 component in the 

present study was generated by a widely distributed network including the middle and 

superior temporal areas, temporal-parietal junction, and prefrontal areas consistent with 
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the neural network that has been implicated for N400 with intracranial recordings and 

MEG in humans (Kutas and Federmeier, 2011). The maximal source density of this 

network was identified as a region within the inferior parietal lobule, considered to be an 

area that integrates sensory, motor, and conceptual information during action perception 

(Amoruso et al. 2013), and therefore is likely to be sensitive to prediction violations.  

We performed source localization for the N400 effect in our data 1) to see 

whether the estimated generators in our study were consistent with the broader literature 

on the component, and 2) to compare with results from a separate study using the same 

stimuli, along with a neuroimaging method with much more precise resolution (Saygin et 

al., 2012). By themselves, they do not constitute a precise localization of the N400 effect 

due to the inherent nature of source localization methods. Without subject specific 

measurements, these results should be interpreted with caution given limitations of our 

approach (i.e. projecting group averaged data onto a template brain).   

It is important to note that N400 effect, initially discovered in the linguistic 

domain, has been shown with non-linguistic stimuli as well including pictures and videos 

(Sitnikova et al. 2008; Bach et al. 2009; Shibata et al. 2009; Proverbia and Riva, 2009). 

Therefore, it is thought to reflect a generic semantic process regardless of the stimulus 

type (Federmeier and Kutas, 2011). In the present study, we suggest that the form 

(appearance) of the visually presented agent provided a context from which the subject 

inferred how the agent would move over time (e.g. a mechanical/robotic appearance 

would activate the semantic network that includes motion information associated with 

robotic appearances), the same way a preceding word group provides a context for the 

upcoming word in a sentence (e.g. I take coffee with cream and _____ (“sugar” instead of 
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“dog”), and activates the relevant semantic network associated with the word group. 

Thus, using EEG has allowed us to link the uncanny valley phenomenon to general 

cognitive processing using the well-established dependent measure N400. 

The present study also provides a potential link between the N400 component and 

the predictive coding theories of perception of other individuals (Kilner et al., 2007a; 

2007b). The N400 component has long been used to study the predictive mechanisms of 

the human brain in many domains (e.g. language). On the other hand, predictive coding 

theory has been proposed as a mechanism of perception of other individuals but it has 

never been tested in an empirical setting directly. Although further work at a 

physiological level is needed to link the N400 with the theoretical constructs of the 

predictive coding theory (e.g. prediction error signals), the current study together with 

existing empirical and theoretical work (Amoruso et al. 2013; Rabovsky and McRae, 

2014) implicate the N400 as a potential dependent measure for testing predictive coding 

theories of human cognition.  

Furthermore, the use of N400 opened a new avenue of research to better 

characterize the uncanny valley, and guide the design of future artificial agents. For 

instance, appearance-motion incongruence is one particular instance where expectations 

are violated in agent perception. A broader range of expectation violations such as visual-

auditory cues or task-relevant contextual violations (Ho and MacDorman, 2008; 

Yamamoto et al. 2009; Mitchell et al. 2011; Nie et al. 2012;) likewise can be studied to 

better understand the phenomenon and aid the design process in the artificial agent 

technology by means of integrating knowledge from cognitive sciences (Norman, 2013), 

which is important for critical application domains such as education and healthcare. 
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FIGURE CAPTIONS 

Figure 1. Hypothetical curves that depict the uncanny valley effect for static and moving 

agents in varying levels of humanlikeness. 

 

Figure 2. Stimuli used in the ERP experiment, ERP plots for the N400 effect, and bar plot 

for the N400 effect. (A) Sample static frames from the movies used in the EEG 

experiment depicting the three agents: Robot, Android, Human. (B) ERP plots of a 

representative frontal site (Fz) for static and dynamic forms for each agent (Robot, 

Android, Human). N400 is greater for moving Android compared to static, whereas no 

such difference was found for Human or Robot. (C) Bar graphs representing the area 

under curve for N400 (370-600 ms) for each of the conditions. N400 is significantly 

greater for dynamic than static form for Android, whereas they did not differ for Robot or 

Human. 

 

Figure 3. ERP scalp maps representing the difference between static and dynamic forms 

for each agent (Human, Android, Human) in the time interval of the N400 (370 ms – 600 

ms).  

 

Figure 4. Source reconstruction analysis, all conditions (dynamic-static) collapsed. 

LORETA analysis in the N400 (370-600 ms) interval identified a distributed brain 

activity including middle and superior temporal areas (MTG and STG), tempora-parietal 
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junction (IPL), and frontal areas (IFG, MFG, Medial FG), primarily in the left 

hemisphere (Difference waves of all conditions (Robot, Android, Human) are collapsed). 

Colorbar shows the source density. The maximal source density of this network is 

inferior parietal lobule (x = -59, y = -32, z = 29, MNI coordinates).  

 

 

 

Highlights 

 Uncanny valley can be explained by violation of one’s predictions about human 

norms 

 N400 ERP component can be used to assess the design quality of social robots 

 Mechanisms underlying perception of other individuals are predictive in nature 

 

 

 



 

 23 



 

 24 

 




