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In Troyer and Kutas (2018), individual differences in knowledge of the world of Harry Potter (HP)
rapidly modulated individuals’ average electrical brain potentials to contextually supported words in
sentence endings. Using advances in single-trial electroencephalogram analysis, we examined whether
this relationship is strictly a result of domain knowledge mediating the proportion of facts each
participant knew; we find it is not. Participants read sentences ending in a contextually supported word,
reporting online whether they had known each fact. Participants’ reports correlated with HP domain
knowledge and reliably modulated event-related brain potentials to sentence-final words within 250 ms.
Critically, domain knowledge had a dissociable influence in the same time window for endings that
participants reported not having known and/or were less likely to be known/remembered across partic-
ipants. We hypothesize that knowledge impacts written word processing primarily by affecting the neural
processes of (implicit) retrieval from long-term memory (LTM): Greater knowledge eases otherwise
difficult retrieval processes.
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Understanding words in context requires quick, dynamic access
to knowledge in long-term memory. Indeed, over the past 50 years,
psycholinguists have convincingly demonstrated that sentence pro-
cessing not only occurs incrementally but at times predictively
(DeLong, Troyer, & Kutas, 2014; Kutas, DeLong, & Smith, 2011).
Online measures (eye-tracking, self-paced reading, and eye move-
ments to images in scenes) indicate rapid sensitivity to word
frequency (Trueswell, 1996), plausibility of thematic relationships
(Trueswell, Tanenhaus, & Garnsey, 1994), discourse (Ehrlich &
Rayner, 1981), and other linguistic/nonlinguistic information gleaned

from world knowledge (e.g., Borovsky & Creel, 2014; Kamide,
Altmann, & Haywood, 2003). Scalp recordings of electrical brain
activity (e.g., event-related brain potentials or ERPs) during word-
by-word reading and speech track brain functioning in real time
and reflect neural sensitivity to word, sentential, and pragmatic
factors that impact semantic retrieval1 within 250 ms of a word’s
occurrence (e.g., N400, a negativity between �250–500 ms post-
stimulus onset, which is especially large for semantic anomalies
but is a default response to all words; e.g., Federmeier & Kutas,
1999; reviewed in Kutas & Federmeier, 2011). Compared to ERPs
elicited by a correct (true) word, lexico-semantic violations and
lexically appropriate but untrue world-knowledge violations both
elicit indistinguishably large N400s (e.g., for Dutch speakers: “The
Dutch trains are yellow/white/sour and very crowded”), suggesting
similar time courses for retrieval of these two knowledge types
(Hagoort, Hald, Bastiaansen, & Petersson, 2004). In short, under-
standing language requires knowledge of words and of the world,
both assumed to be quickly available.

However, although individuals vary considerably in what they
know and how well they know it, with documented consequences
for perception, categorization, and/or memory across different
domains—for example, cooking, sports, chess, physics, medicine
(Ericsson, Charness, Feltovich, & Hoffman, 2006)—the conse-
quences for real-time sentence processing have not yet been de-
tailed. To date, research on individual differences in language
processing has focused primarily on differences in general cogni-
tive abilities (Boudewyn, Long, & Swaab, 2012; Kim, Oines, &

1 Here and elsewhere, by retrieval, we mean the implicit activation of
semantic memory, which N400 brain potentials have been argued to
reflect.
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Miyake, 2018; Nakano, Saron, & Swaab, 2010) and/or in
language-specific abilities, such as language proficiency in a first
or second language (e.g., McLaughlin, Osterhout, & Kim, 2004;
Pakulak & Neville, 2010; Tanner, McLaughlin, Herschensohn, &
Osterhout, 2013; reviewed in Boudewyn, 2015).

A major challenge for investigating knowledge-based individual
differences in real-time sentence comprehension is allowing for
the requisite variability in what people know while probing their
comprehension with natural sentences. We have approached this
using the narrative world of Harry Potter (HP) by J.K. Rowling—a
constrained, yet rich, domain with complex intersecting trajecto-
ries of characters, objects, actions, and events (Troyer & Kutas,
2017, 2018). Troyer and Kutas (2018) recorded electroencephalo-
gram (EEG)/ERP as participants varying in HP knowledge read
sentences about (a) the world of HP or (b) general topics (i.e.,
control sentences). Control sentences ended with the highest-cloze/
best completion (supported) or a plausible low cloze probability
word (unsupported). HP sentences ended with a word that accu-
rately described “facts” from the books (supported) or a word that
seemed plausible but was factually incorrect given HP knowledge
(unsupported). As expected, HP domain knowledge modulated
N400 effects of contextual support for sentences about HP, but not
for control sentences; the N400 effects were driven by variance in
the supported (but not unsupported) HP words, consistent with the
proposal that greater domain knowledge facilitates retrieval of
relevant information during real-time sentence processing. We
reasoned that greater HP domain knowledge likely led to partici-
pants knowing/remembering a greater number of the HP facts and,
consequently, to smaller mean N400 amplitudes to supported words
as a function of the number of trials each participant knew.
However, as we did not measure which facts each individual knew,
we could not be certain that (a) those with greater HP knowledge
knew a greater proportion of the critical words or that (b) this alone
determined the proportion of larger versus smaller N400s in their
averages. Moreover, given attested individual differences in cog-
nition and behavior as a result of domain expertise (Ericsson et al.,
2006), we reasoned that domain knowledge might influence real-
time processing beyond strictly determining the proportion of
items individuals knew. Such individual differences in knowledge
seem likely to influence the timing and/or contents of knowledge
that can be rapidly brought to mind, yet they are strikingly absent
from current models of real-time sentence processing. We thus
decided to investigate the influences of HP domain knowledge and
participants’ specific knowledge of individual HP “facts” on writ-
ten word ERPs by asking participants whether or not they had
known each fact.

This single-trial experimental design required analyzing
ERPs as a function of categorical (response type: known/un-
known) and continuous (HP domain knowledge) variables in
participants who varied in the proportion of trials reported as
known (vs. not). These aspects of the design pose challenges for
standard ERP analyses, which rely on averages (not single
trials) across participants and conditions. For statistical hypoth-
esis tests, we therefore employed hierarchical mixed-effects
regression (Baayen, Davidson, & Bates, 2008), which can
model single-trial data, categorical and/or continuous predic-
tors, and data not evenly matched across cells.

In many ERP studies, the grand mean to an event of interest—
that is, the point-by-point average of participant averages—is

plotted for each experimental condition. This method, however, is
not well-suited for visualizing data from conditions with unbal-
anced cell counts or which covary with continuous variables. We
thus turned to a relatively new, thus far little-used technique, the
regression ERP (rERP), to visualize our time series data (Smith &
Kutas, 2015a, 2015b). rERPs are calculated from the same scalp
potential data as conventional ERPs, time-locked to events of
interest at each electrode location. Besides estimating averages, the
rERP estimated regression coefficients (i.e., weights) can repre-
sent, for visualization and statistical analysis, the influence of
categorical and/or continuous predictors as well as any interactions
thereof on the event-related EEG signal. Moreover, these coeffi-
cients can be used to compute predicted ERPs for unobserved
values of variables at the level of the participant, item (each
sentence pair/HP “fact”), and/or trial.

The present study had several aims. First, we aimed to replicate
the positive correlation between HP domain knowledge and aver-
age N400 amplitude to contextually supported words (Troyer &
Kutas, 2018). Second, we directly tested our hypothesis that each
participant’s HP domain knowledge score would correlate strongly
with the number of trials they reported having known during the
EEG experiment. Third, we assessed our prediction of smaller
N400 amplitudes for trials reported as “known” versus “un-
known.” Finally, with this novel design and analyses, we aimed to
determine whether HP domain knowledge modulates the N400 to
contextually supported words after controlling for single-trial-level
reports of knowledge, indicating that effects of domain knowl-
edge on N400 amplitude are not merely a consequence of
averaging different proportions of known versus unknown trials
by participant. This, in turn, would suggest that knowledge-
based differences in cognitive processes (e.g., perception, cat-
egorization, memory), as reported in other domains, may also
be evident in knowledge retrieval processes during real-time
language comprehension.

Method

Participants

Forty-one students (mean age � 20 years; range � 18–23; 29
women, 12 men) at UCSD took part in the study for partial course
credit or payment of $9/hr. To ensure that some participants would
have high knowledge of the Harry Potter domain, a subset (N �
18) were recruited contingent on having read all seven Harry
Potter books and/or having watched all eight Harry Potter films.
All participants provided informed consent reviewed by the Insti-
tutional Review Board at the University of California, San Diego.
We estimated that �40 participants were appropriate based on a
previous study run in the lab, in which N400 amplitudes to
contextually supported words correlated with HP domain knowl-
edge at r � .41 (Troyer & Kutas, 2018); we replicate this result at
r � .37 (see Figure 4).

Materials

Sentence materials. During the EEG portion of the experi-
ment, participants read 172 descriptions of facts/events from the
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narrative world of Harry Potter.2 Using freely available materials
(Wikipedia, fan sites) referring to the text of the Harry Potter
books, the first author created a set of sentences that accurately
described events/entities from the book series. The final word was
designed to be 100% predictable given perfect knowledge of the
series, verified by asking a separate group of participants to com-
plete a cloze norming study (N � 32–343 participants, who varied
in HP domain knowledge as determined by a 10-question trivia
quiz, per item). Mean cloze probability across all norming partic-
ipants and items was .49 (range: .03 to 1.00; Figure 1b; examples
provided in Table 1). For participants scoring in the top half on the
quiz, mean cloze probability was .73 (range: .05 to 1); for those
scoring in the bottom half, mean cloze probability was .24 (range:
0 to 1).

Individual differences tasks and measures. For EEG partic-
ipants, our primary measure of HP domain knowledge was their
score on a 40-question multiple-choice HP “trivia quiz.” 4Partic-
ipants also completed an HP self-report questionnaire; scores were
determined by summing the total number of times an individual
had read each book, seen each movie, and so forth

We also collected several measures of individual differences to
assess other group differences, including general print/reading
experience (media and reading habits questionnaire (MRH); author
and magazine recognition tests (ART/MRT; Stanovich & West,
1989), a general knowledge trivia quiz (GKQ); cultural literacy
checklists (CLC/MCLC; Stanovich & Cunningham, 1993); vocab-
ulary (PPVT; Dunn & Dunn, 2007); and verbal working memory
(sentence span; Daneman & Carpenter, 1980).

Procedure

Ordering of individual differences tasks. ART/MRT were
administered during EEG set-up. After the EEG study, the HP
trivia quiz, HP self-report, and all other tests were administered in
a quiet room in the order described in the preceding section,
followed by debriefing.

EEG experiment. Participants were asked to relax to mini-
mize muscle artifact. They were told they would be reading two-
sentence stories about the world of Harry Potter for meaning and
asked to answer two questions after each pair of sentences. First,
“Did you know this ahead of time?” (Q1). They were instructed to
respond by button press “Yes” or “No”. Following “Yes” re-
sponses, they were asked, “How sure are you?”, responding by
button press with “Certain” or “Not sure”; following “No” re-
sponses, they were asked, “After you read it, did it seem famil-
iar?”, responding with “Yes, seemed familiar” or “No, not famil-
iar” (Q2).

During the EEG experiment, participants sat approximately 100
cm in front of a CRT. Words flashed in white on a near-black
background and subtended about 2.3 horizontal degrees of visual
angle (range � 1.9–4.7°). Each trial began with a blank screen for
two seconds. Then, the first sentence of each pair was presented
until the participant pressed a button. Next, a small crosshair
appeared just below the center of the screen for a duration that
varied randomly between 900 ms and 1100 ms. Participants were
instructed to focus on the crosshair and not move their eyes or
blink while it was on the screen. The second sentence was then
presented one word at a time just above the crosshair for 200 ms
with an interstimulus interval of 300 ms. After the sentence-final

word disappeared, the crosshair remained on the screen for a
duration that randomly varied between 900 and 1100 ms followed
by a blank screen for 1 second. Next, Q1 appeared, remaining on
the screen until the participant answered. Q2 then appeared and
remained on the screen until the participant answered.

EEG Recording

The EEG was recorded from 26 electrode sites arranged geo-
desically in an Electro-cap (Ganis, Kutas, & Sereno, 1996, Figure
9). Online recording was to a common left mastoid reference; data
were rereferenced offline to the average of the left and right
mastoid (A1, A2). Electrodes located adjacent to the outer canthus
of each eye with a bipolar derivation monitored lateral eye move-
ments. Electrodes were placed below each eye referenced to the
left mastoid and were used to monitor vertical eye movements and
blinks. Throughout the experiment, electrode impedances were
maintained under 5 k�. The EEG was amplified with Grass Model
12 Neurodata Acquisition System amplifiers set at a bandpass of
.01 to 100 Hz; the sampling rate was 250 Hz.

Data Analysis

Behavior. We report Pearson’s r for correlations between HP
domain knowledge and the proportion of each response type, by
participant, and for correlations between offline cloze and the
proportion of each response type, by item.

EEG. Single-trial epochs of EEG data were extracted from the
continuous recordings 200 ms before the onset of a critical word
until 900 ms postcritical word. Trials containing artifacts (e.g., eye
movements, blinks, muscle activity, blocking) were removed from
subsequent analyses, resulting in an exclusion of 17% of trials.
Because we sorted trials based on participants’ reports of their own
knowledge (leading to vastly different numbers of trials per bin
across participants), those with relatively high artifact rates were
not excluded. Due to recording error, only partial data were col-
lected for one participant, who was included. For each trial and
channel, a baseline was computed by averaging activity from 200
ms before the word to word onset; this was subtracted from the
single-trial waveform.

Time window analyses. We analyzed a window surrounding
the typical peak of the N400 brain potential from 250 to 500 ms
after critical word onset and a window from 500 to 750 ms during
which post-N400 positivities—hypothesized to reflect a number of
high-level processing mechanisms including mental model updat-
ing (e.g., Brouwer, Fitz, & Hoeks, 2012)—sometimes appear. We
focused on a centro-parietal region of interest (ROI) where N400
effects are typically most prominent, averaging across 8 elec-
trodes (MiCe, LMCe, RMCe, MiPa, LDPa, RDPa, LMOc,
RMOc; Figure 5).

2 One hundred and eight of these sentences were identical to the (sup-
ported) HP sentences from Troyer and Kutas (2018).

3 For the norming study, due to time constraints, each participant pro-
vided completions for only half of the materials; half were completed by 32
participants and the remainder by 34 different participants.

4 With one exception, care was taken to avoid overlap between the HP
trivia quiz and the ERP sentence materials, such that individuals would not
be able to answer any of the quiz questions based on the ERP sentences.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

3LUMOS! TRACKING KNOWLEDGE DURING READING



Our experimental design hinged on participants’ subjective,
trial-by-trial responses to Q1, leading to different numbers of trials
per cell for this variable across participants.5 To that end, we used
hierarchical mixed-effects linear regression models, which allow
for different counts per cell (Baayen et al., 2008), on trial-by-trial
measures of ERP data, including mean amplitude in N400 win-
dow. Because factors modulating N400 amplitude often modulate
brain potentials in a post-N400 time period (see Van Petten &
Luka, 2012, for a review), we also analyzed mean amplitude in a
late time window (500–750 ms). Unless explicitly indicated oth-
erwise, time window analyses were performed on these single-trial
data. Models included random intercepts6 for item and participant
and were implemented using lme4 (1.1–12; Bates, Mächler,
Bolker, & Walker, 2015) and lmerTest (3.0–1; Kuznetsova,
Brockhoff, & Christensen, 2017) packages in R (3.3.2). Where
relevant, we performed model comparison and report chi-square
statistics on nested models to do significance testing on covariates
of interest. To further understand covariates of interest, p values on
beta coefficients were computed using the Satterthwaite option for
denominator degrees of freedom for F statistics. Categorical pre-
dictors were deviance-coded (i.e., Yes � 1, No � �1, for Q1) and

continuous predictors (e.g., HP domain knowledge, offline cloze)
were z-transformed so that a value of �1 reflected a single
standard deviation above or below the mean (at 0). To visualize
effects of and interactions between Q1 response and HP domain

5 We recognize that there may be systematic differences in how partic-
ipants answered Q2 as a function of HP domain knowledge. However, we
do not report ERP data based on response to Q2 because there were too few
trials per cell, especially for the most knowledgeable individuals, who
rarely responded that they were certain they had not known an item/fact
(Figure 2). In future studies with more power, we plan to address the
relative influence of domain knowledge on items never known, those
seeming familiar (perhaps forgotten), and those actually remembered/
known.

6 There is some controversy among experts about when to use
maximally-specified random effects structures. Whereas Barr, Levy,
Scheepers, and Tily (2013) argue for using the maximal random effects
structure justified by the design, Bates, Kliegl, Vasishth, and Baayen
(2015) argue for parsimonious random effects justified by the data. For our
ERP data, the pattern of results for inferential statistical tests was the same
regardless of the random effects structure; we therefore chose to present
results from models with simpler (intercepts-only) random effects struc-
tures.

Figure 1. (a) A histogram shows the distribution of HP knowledge scores across participants. (b) A histogram
shows the distribution of cloze probability across items. (c) Each participant’s raw HP knowledge score from the
offline, 40-question trivia quiz is plotted against the proportion of trials they reported having known during the
ERP study (i.e., the proportion of “Yes” responses to Question 1). The two are correlated at r � .85, p � .001.
(d) For each item, its offline cloze probability is plotted against the proportion of participants who reported
having known it during the ERP study. The two are correlated at r � .65, p � .001.
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knowledge we computed predicted ERPs from the coefficients of
the mixed-effects linear regression model.

Results

Behavioral Data

Individual differences tasks. Table 1 in the supplemental
materials reports descriptive statistics for participants’ scores on
the HP trivia quiz and other individual difference measures. The
distribution of HP domain knowledge scores is plotted in Figure
1a. Intercorrelations among individual differences measures are
provided in supplemental Table 2.

Question responses. Participants indicated that they had known
information described by each sentence pair (i.e., responded “Yes” to
Q1) on an average of 59% (95% CI [52%, 67%]) of trials. As
anticipated, the number of statements that participants reported having
known correlated strongly with their performance on the HP domain
knowledge quiz, r � .85, p � .001 (Figure 1c). Item-wise offline
cloze probability, measured in a separate group of participants, was
also strongly correlated with the proportion of participants who re-
ported having known each item, r � .67, p � .001 (Figure 1d).
Participants responded with “Yes—Certain” on 50% (95% CI [41%,
58%]) of trials; “Yes—Not Sure” on 10% (95% CI [8%, 12%]) of
trials; “No—Seems Familiar” on 18% (95% CI [14%, 21%]) of trials;
and “No—Not Familiar” on 23% (95% CI [17%, 29%]) of trials (see
Figure 2).

ERP Data

Figure 3 displays trial-averaged ERPs across 26 scalp electrodes
from 200 ms before the critical word onset to 900 ms postcritical
word, with separate waveforms computed for trials on which
participants responded “Yes” versus “No” to Q1.7 Across most
electrodes, ERPs to critical words for “Yes” and “No” responses
are characterized by two early sensory components (N1 and P2).
The P2 is followed by a wave that is mostly positive-going for
“Yes” responses and that shows a relative negativity for “No”
responses.

Before turning to single-trial analyses, we examined partici-
pants’ mean N400 amplitude to critical words in the centro-parietal
ROI; it was correlated with HP domain knowledge at r � .37 (p �
.018), replicating the pattern observed for HP-supported items in
Troyer and Kutas (2018) (compare Figure 4a and 4b). Figure 4c
presents the three-way relationship between participants’ HP do-

main knowledge, mean N400 amplitude, and the proportion of
trials reported.

Single-trial ROI analyses.
N400 time window. Results from a linear mixed-effects model

crossing Q1 response type and HP domain knowledge as fixed
effects are presented in Table 2 (see supplemental Figure 1 for a
visualization of the beta coefficients fit to ROI data for the mixed-
effects rERP model). Q1 response type was a significant predictor
(see Table 2); items that participants reported having known elic-
ited reduced N400 amplitude compared to those reported as un-
known. The effect of HP domain knowledge was marginal (see
Table 2), with higher-knowledge individuals exhibiting somewhat
more positive-going N400 potentials compared to lower-knowledge
individuals. Critically, the interaction term for Q1 response and HP
domain knowledge was a significant predictor. This model was pre-
ferred over one incorporating only Q1 response as a fixed effect
(�2(2) � 12.601, p � .002), indicating that HP domain knowledge
added explanatory power over and above participants’ trial-by-trial
reports of knowledge.

Since the planned test found the interaction effect reliable, we
conducted follow-up analyses of “Yes” and “No” responses sep-
arately using mixed-effects models with HP domain knowledge as
a fixed effect (see Table 3). For “Yes” responses, a model incor-
porating HP domain knowledge was not a significant predictor;
this model was not preferred over an intercept-only model
(�2(1) � .006, ns), indicating no explanatory power of HP domain
knowledge for “Yes” trials. For “No” responses, however, HP
domain knowledge was a significant predictor, and this model was
preferred over an intercept-only model (�2(1) � 5.003, p � .025):
having higher HP domain knowledge led to more positive going
potentials in the N400 time window compared to having lower HP
domain knowledge. We visualize this influence using both a stan-
dard approach, dividing participants into two subgroups using a
median split based on HP domain knowledge and by plotting
predicted ERPs based on regression modeling for hypothetical
subjects (details in Figure 5).

7 The pattern of reduced N400 amplitude for “Yes” compared to “No”
responses is similarly apparent whether data are averaged across trials (as
in Figure 3), averaged within participants and then across participants (as
is typical in ERP studies), or averaged by trial or participant for a sub-
sample of participants (N � 28) with a minimum of 20 items of each
response type (Yes, No).

Table 1
Sample Sentence Pairs

Sentence frame Final word Cloze

There is one main sport in the wizarding community. It is known as Quidditch 1.00
The character Peter Pettigrew changes his shape at times. He takes the form of a Rat .72
Harry eventually learns the truth about Sirius Black. Sirius is Harry’s Godfather .56
Hermione owns a large, orange feline. Her pet is called Crookshanks .44
To combat boggarts, wizards must think of something funny. They must use the spell Riddikulus .38
Hogwarts students shop at Madam Malkin’s. This is where they buy their Robes .31
Looking for Sirius, Harry and his classmates fly to the Ministry of Magic. They ride winged horses called Thestrals .13

Note. The original 172 descriptions were split into sentence pairs for presentation purposes. First sentences appeared as a whole to participants (mean
length � 9.5 words; range � 4–18 words); the second were presented word by word (M � 6.8 words; range � 3–13 words).
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Next, we asked whether individual differences apart from HP
domain knowledge might modulate the influence of participants’
subjective reports of knowing individual items. We therefore used
a linear mixed-effects model predicting N400 amplitude based on
four variables: HP domain knowledge, verbal working memory,8

reading experience, and general knowledge, as well as Q1 and its
interaction with each of these variables (supplemental Table 3).
Consistent with previous analyses, there was a significant effect of
Q1 response type, with “Yes” trials associated with more positive-
going potentials compared to “No” trials, and Q1 response type
interacted with HP domain knowledge, but not with any other
individual difference measure. Indeed, nested model comparison
of this more complex model with one incorporating HP domain
knowledge and Q1 response type (described above) indicated that
the simpler model was preferred (�2(6) � 3.577, ns); this confirms
results from our previous analysis and strongly supports the notion
that individual-participant-level HP domain knowledge influenced
the brain’s response to critical words on trials that participants
reported not having known.

Late positivity time window. Results from a mixed-effects
model crossing Q1 response type and HP domain knowledge score
as fixed effects are presented in Table 4. Both Q1 response and the
interaction term crossing Q1 response and HP domain knowledge
were significant predictors. This model was preferred over a model
incorporating only Q1 response (�2(2) � 22.609, p � .001),
indicating that HP domain knowledge added explanatory power
over and above participants’ trial-by-trial reports of knowledge
during the late positivity time window in the centro-parietal ROI.

To follow up on the Q1 by HP domain knowledge interaction,
we fit separate models with HP domain knowledge as a fixed
effect to subsets of the data based on Q1 response (see Table 5).
HP domain knowledge was a marginal predictor for “No” but not
“Yes” responses; for “Yes” responses, a model incorporating HP
domain knowledge was not preferred over an intercept-only model
(�2(1) � 0.952, ns) while for “No” responses, a model incorpo-
rating HP domain knowledge was marginally preferred over an

intercept-only model (�2(1) � 3.809, p � .051). To sum up, in the
late positivity time window, for the centro-parietal ROI, higher
(compared to lower) HP domain knowledge trended toward more
positive-going amplitude on trials that participants reported not
having known.

In an analysis incorporating individual differences (supplemen-
tal Table 4), we again found an interaction between Q1 response
type and HP domain knowledge. Q1 did not interact with any other
individual difference measure, nor were any other terms in the
model significant. Indeed, the more complex model was dispre-
ferred compared to the simpler model reported above (�2(6) �
4.802, ns).

Discussion

The view that rapid access to world knowledge is a part of
real-time language comprehension is now widely held. Yet despite
considerable variability in what different people know, studies of
language processing have overlooked those differences (e.g., Filik
& Leuthold, 2013; Hagoort et al., 2004; Hald, Steenbeek-Planting,
& Hagoort, 2007; Van Berkum, Holleman, Nieuwland, Otten, &
Murre, 2009). We have leveraged recent statistical advances—the
rERP technique and mixed-effects linear regression models—
along with measurable variance in knowledge of a well-known
narrative world to better delineate world knowledge influences on
real-time sentence (and word) processing. In Troyer and Kutas
(2018), we found that each individual participant’s degree of HP
domain knowledge predicted N400 effects of contextual support,
suggesting that it was an important determinant of real-time access
to meaning during reading. We reasonably assumed that an indi-
vidual’s degree of domain knowledge was associated with the
proportion of facts they knew, but did not know which these
actually were. Hence, we could not test whether domain knowl-

8 Verbal working memory scores were not collected for two participants
due to time constraints; for this analysis, N � 39.

Figure 2. The proportions of trials of each responses type (for Q1 and Q2) are plotted by participant, ranked
by HP knowledge score (highest on the left, lowest on the right).
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edge had additional influences on their ERPs, as might be expected
from the expertise literature.

Here, we addressed these unresolved questions in an electro-
physiological reading study incorporating trial-by-trial participant
knowledge reports. We replicated the moderate correlation be-
tween N400 amplitudes to contextually supported words with HP

domain knowledge reported in Troyer and Kutas (2018). With our
single-trial design, we confirmed our hypothesis that offline HP
domain knowledge scores would be highly correlated with the
proportion of online sentence comprehension trials participants
reported knowing. As expected, we showed that single-trial-level
participant reports of knowledge were strong predictors of ERPs to

Figure 3. Grand average ERPs across all single trials to critical words are plotted across the whole head using
a low-pass filter with a cutoff of 10 Hz (electrode locations shown on the head in the center).

Figure 4. (a) In Troyer and Kutas (2018), HP domain knowledge and mean N400 amplitude to supported words
in HP contexts were correlated at r � .41 (p � .05). (b) This pattern is replicated in the current study, r � .37
(p � .05). (c) The data shown in panel (b) are presented again, shaded and sized according to the proportion of
items that each individual participant reported knowing during the ERP study.
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supported HP sentence endings. Critically, HP domain knowledge
had yet an additional influence on ERPs, even after controlling for
single-trial-level participant reports of knowledge. This effect was
evident at least by �250 ms, approximately when information
retrieval from long-term memory is thought to occur (i.e., begin-
ning during the N400 time period), demonstrating a rapid impact
of domain knowledge on lexical/semantic retrieval. Moreover, this
additional influence was reliable only for trials individuals re-

ported not knowing. That is, domain knowledge had its greatest
influence when retrieval difficulty was highest. This effect per-
sisted beyond the N400 time period into a late positivity period,
which has been associated with several high-level cognitive pro-
cesses in different tasks. In sentence processing tasks, late posi-
tivities have been functionally attributed to semantic reanalysis
(Van Petten & Luka, 2012) and/or updating of a mental model
(Brouwer et al., 2012). In memory tasks, late positivity effects with
similar timing and scalp distribution have been associated with
retrieval of episodic/specific information (cf. “old/new” effects,
reviewed in Rugg & Curran, 2007). For example, Voss and Paller
(2007) used a study-test “know/remember” paradigm and found
that items judged as remembered/recollected during a test phase
elicited greater parietal late positivities (beginning �500 ms post-
stimulus) compared to items judged as known/familiar (but not
remembered) or items correctly judged as new. We do not see a
direct link between our pattern of results and functional attribu-
tions of late positivity effects in sentence processing studies. Based

Table 2
Statistics for Fixed-Effect Predictors of Mean ERP Amplitude in
the N400 Time Period for ROI Analyses

Fixed effects 	 SE DF t-value p-value

Intercept 4.65 .42 59 11.05 .0000
Q1 Response .73 .16 4512 4.66 .0000
HP Knowledge .72 .39 44 1.83 .0747
Q1 Response: HP Knowledge �.55 .17 4916 -3.28 .0011

Figure 5. (a) Trial-averaged ERPs to critical words for a centro-parietal ROI (see text) are plotted by Q1
response type and overlapped for two subgroups of participants based on a median split on HP knowledge (HPK)
scores. The high-knowledge subgroup had an HPK score of �30 (about 1 SD above the sample mean score of
23), and the low-knowledge subgroup had an HPK score of �16 (about 1 SD below the sample mean). (b) With
standard approaches it is not possible to sort the data according to fine grains of a continuous variable when there
aren’t enough data points at each level of the variable. The regression ERP approach that we introduce and apply
to visualize these data allows us to estimate what the data might look like, based on a generalization extracted
not just over small subsamples of the data (which in this case are too limited) but over the whole sample.
Predicted ERPs for hypothetical subjects and Q1 response type are therefore plotted based on regression
modeling: Using the estimated coefficients from linear mixed-effects models of centro-parietal ROI voltage
based on Q1 response type, HPK, and their interaction, fit at each time point, we illustrate the time course of
variation in ERPs as a function of HPK (in parentheses) at 0, �1, and �2 standard deviations from the sample
mean. Because the actual values of HPK scores in (a) roughly correspond to �1 SD, the median-split ERPs in
(a) roughly map on to the predicted ERPs for HPK scores of �1 SD in (b). (c) The centro-parietal ROI electrode
locations are indicated by the filled-in circles. See the online article for the color version of this figure.
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on the memory literature, however, we speculate that our knowledge-
based late positivity effects may result from variation in the degree to
which individuals bring specific and/or episodic information to mind
while processing critical words.

At the item level, real-time reports of knowledge and offline
cloze probability (which correlated at r � .67; Figure 1c,d) indi-
cated substantial variability in how likely each item was to be
known/remembered in real time and in how easy/difficult it was to
produce the final word of each item. We reasoned that this item-
level variability might also contribute to retrieval difficulty and be
modulated by domain knowledge. We thus performed a post hoc
regression analysis incorporating Q1 response type, participant-
level HP domain knowledge, and item-level offline cloze proba-
bility (supplemental Table 5). In the model, each of these predic-
tors was significant, with N400 amplitudes reduced for high-
compared to low-cloze items (supplemental Table 5). Importantly,
there was a three-way interaction between Q1 response type, HP
domain knowledge, and offline cloze; HP domain knowledge
seems to have its greatest influence on low-cloze items individuals
reported having known, and on high-cloze items individuals re-
ported not having known (supplemental Figure 2)—both reflecting
less than optimal retrieval conditions—that is, cases in which items
are least likely to be certainly known (or unknown) and that seem
most likely to experience retrieval difficulty.

The present study provides, for the first time, evidence that
domain knowledge influences real-time (implicit) retrieval of word
information during sentence processing—beyond determining
how much (i.e., proportion of facts) an individual knows. Admit-
tedly, the explanatory mechanism(s) for these findings are yet to be
determined. One set of explanations suggests that individuals with
greater domain knowledge have deeper and/or differentially func-
tionally organized knowledge; for example, experts in several
domains have been found to organize facts according to higher-
order principles and “core concepts” (Chi & Ohlsson, 2005).
Experts’ domain-level semantic networks thus likely differ from

those of novices in both content and network connectivity
(Steyvers & Tenenbaum, 2005). The real-time differences in the
present study similarly may result from individuals with greater
knowledge being more likely to retrieve information related to
(and perhaps relevant for) our experimental sentences/“facts.” By
activating relevant information during sentence processing, knowl-
edgeable individuals may have enjoyed facilitated retrieval upon
encountering critical words—even those reported as not known.
Additionally, or alternatively, more knowledgeable individuals
may have used different criteria or thresholds for their trial-level
knowledge reports or may otherwise have perceived task demands
differently, leading to a parcellation of trials (“Yes” and “No”
responses) that differed systematically as a function of domain
knowledge. We recognize that the N400 time window could be
contaminated by overlapping P300 potentials elicited by the task-
related decisions made on the critical word (see Rohrbaugh,
Donchin, & Eriksen, 1974), and which may have overlapped with
N400 potentials in timing and scalp distribution. However, the
current results (that HP domain knowledge positively correlates
with the degree of reduction in N400 amplitude to contextually
supported words in HP sentences) replicate findings from Troyer
and Kutas (2018, in which the task did not require participants to
make any overt decisions during the ERP study, but simply to read
the sentences for comprehension. That the findings look so similar
leads us to infer that the N400 effects are separable from task
effects based on participant report. Whatever the precise explan-
atory mechanism(s), we suggest that a variable mediating the
influence of HP domain knowledge seems to be the ease of
(implicit) information retrieval from memory.

In sum, we investigated fine-grained influences of world knowl-
edge on real-time sentence comprehension in a novel experimental
design using state-of-the-art analyses on single-trial ERP data. For
the first time, we were able to dissociate individuals’ reports of
knowledge of specific facts from their knowledge of a rich domain
of world knowledge. Our findings illustrate that domain knowl-
edge can have a rapid influence—by less than a third of a sec-
ond—on retrieval processes during reading, especially in cases
where retrieval is likely to be difficult.
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