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In 2005, we reported evidence indicating that upcoming phono-
logical word forms—e.g., kite vs. airplane—were predicted during
reading. We recorded brainwaves (electroencephalograms [EEGs])
as people read word-by-word and then correlated the predictabil-
ity in context of indefinite articles that preceded nouns (a kite
vs. an airplane) with the average event-related brain potentials
(ERPs) they elicited [K. A. DeLong, T. P. Urbach, M. Kutas, Nat. Neu-
rosci. 8, 1117–1121 (2005)]. Amid a broader controversy about the
role of word-form prediction in comprehension, those findings
were recently challenged by a failed putative direct replication
attempt [M. S. Nieuwland et al., eLife 7, e33468 (2018); nine labs,
one experiment, and 2.6e4 observations]. To better understand
the empirical justification for positing an association between
prenominal article predictability and scalp potentials, we con-
ducted a wide-ranging exploratory data analysis (EDA), pooling
our original data with extant data from two followup studies (one
lab, three experiments, and 1.2e4 observations). We modeled the
time course of article predictability in the single-trial data by fit-
ting linear mixed-effects regression (LMER) models at each time
point and scalp location spanning a 3-s interval before, during,
and after the article. Model comparisons based on Akaike infor-
mation criteria (AIC) and slope-regression ERPs [rERPs; N. J. Smith,
M. Kutas, Psychophysiology 52, 157–168 (2015)] provide substan-
tial empirical support for a small positive association between
article predictability and scalp potentials approximately 300 to
500 ms after article onset, predominantly over bilateral poste-
rior scalp. We think this effect may reasonably be attributed to
prediction of upcoming word forms.

language | prediction | EEG | rERP | EDA

Psycholinguistic theories of language comprehension gener-
ally endorse the near-immediate, “incremental” construction

of structured representations of meaning, as words, phrases, sen-
tences, and discourses rapidly unfold over time (1). New infor-
mation must be integrated with this evolving semantic represen-
tation, and some accounts further posit predictive or preparatory
mechanisms that facilitate processing and help the system keep
up with the input (2–4). The hypothesis that the comprehension
system actively predicts is difficult to test experimentally. The
challenge is to find evidence of predictive processing that cannot
plausibly be attributed to rapid integration. For instance, given
a sentence context like, The day was breezy so the boys went out-
side to fly , knowledge of the world and English make some
continuations more predictable (a kite) and others less so (an
airplane). It is possible that the supporting context leads the pro-
cessor to predict (anticipate or expect) the word kite before it
arrives, in which case online measures sensitive to experimental
manipulations of processing difficulty—e.g., self-paced reading
times, eye movements, event-related brain potentials (ERPs),
and event-related magnetic fields (ERFs)—might show an exper-
imental effect in the expected direction—i.e., faster reading
times, shorter gaze durations, or reduced negative deflection
of event-related potential around 400 ms (N400) ERPs/ERFs—
for kite vs. airplane. However, if the effects observed at these
nouns could, with equal justification, be attributed to violated

predictions or integration difficulty (or both), these findings are
compatible with, but do not constitute strong evidence for, pre-
diction, and parsimony favors integration mechanisms alone,
which are necessary on any account.

The crux of the experimental challenge is time: Strong tests
that information is pre-dicted come from measurements made
before it actually arrives. Seminal laboratory studies measuring
eye movements while listening to meaningful sentences in a con-
trolled visual environment (5–7) found that people tended to
glance at mentioned objects quickly or even prior to hearing
a likely word, indicating rapid language-driven anticipation of
upcoming semantic or conceptual content. To date, the clear-
est evidence for prediction of specifically linguistic information
comes from paradigms that recruit sequential dependencies,
wherein one type of grammatical element, such as a word or
morphological marking, regularly co-occurs with another ele-
ment. The seminal ERP studies (8, 9), were conducted by Wicha,
Bates, Moreno, and Kutas using grammatical gender agreement
between indefinite articles and nouns in Spanish—e.g., feminine
una canasta (“a basket”) vs. masculine un costal (“a sack”). If a
Spanish sentence is likely to continue about a basket, the corre-
sponding indefinite article is likely to be una, not un, and vice
versa if the likely continuation is about a sack. Since the two
forms of the indefinite article have the same meaning (“some
singular thing”), they should be equally easy or difficult to inte-
grate. Wicha et al. (8, 9) recorded electrical brain potentials at
the scalp (electroencephalograms [EEGs]) as people read sen-
tences word-by-word on a computer screen and found small
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differences between the average ERPs elicited by articles that
were compatible vs. incompatible with the grammatical gender
of the likely continuation. These effects varied with the particu-
lars of the experimental design: Incompatible articles elicited an
N400-like relative negativity when the referent of the likely noun
was depicted with a line drawing (8, 10) and a relative positive
deflection around 500 to 700 ms when the continuations were
orthographic words (9). With other lexical variables controlled
by the experimental design, the difference between un and una
is plausibly attributed to a mismatch between the grammatical
gender of the article and the gender of the likeliest continuation,
indicating that the continuation had been predicted before it was
encountered.

Subsequent studies have used related sequential dependency
designs to probe other languages for evidence of prediction,
e.g., via case-marking in Dutch (11), grammatical gender in
Dutch (refs. 12–14, but see ref. 15), Polish (16), and German
(17). For these types of experimental designs, the nature of
the linguistic dependency constrains the inferences that can be
drawn about what information is anticipated (discussed in refs.
3 and 18). English does not mark grammatical gender or case
agreement on nouns, but does attest a phonological dependency
between alternate forms of the indefinite article a, which pre-
cedes consonant-sound-initial words, and an, which precedes
vowel-sound-initial words: a kite vs. an airplane. We recruited
this sequential dependency in previous work (ref. 19; hereafter,
DUK05), recording scalp potentials while people read sentences
like, The day was breezy so the boys went outside to fly [a kite/an
airplane] in the park, one word at a time on a computer screen.
We observed a positive correlation between the predictability,
in context, of the indefinite articles that preceded the nouns a
kite vs. an airplane and the average ERPs they elicited 200 to
500 ms over bilateral central and posterior scalp. Since the a/an
alternation depends on the initial speech sound of the next word,
we took the systematic association between the ERP amplitude
and offline article cloze probability to suggest “that individuals
can use linguistic input to pre-activate representations of upcom-
ing words in advance of their appearance” (ref. 19, p. 1119), and
“Our observation of an ERP expectancy effect at the article leads
us to conclude that predictions can be for specific phonological
forms—words beginning with either vowels or consonants. In this
sense, we propose that prediction can be highly specific, at least
under some circumstances” (ref. 19, pp. 1119–1120).

Controversy has emerged recently regarding the strength of
evidence for word-form prediction in variations of the a/an
design. For instance, we did not observe the effect in younger
adults with sentences at a faster presentation rate (ref. 20, exper-
iment 2, 3.3 words per second) or in older adults at two words
per second (21), and other groups have reported statistically reli-
able (22), marginal (ref. 23, experiment 2), and null results (ref.
23, experiment 1). A recent large-scale study by Nieuwland et
al. (ref. 24; hereafter, NIET18) proposed to resolve the ques-
tion by reusing the experimental materials and design of the
original DUK05 a/an study (healthy younger adults reading two
words per second in central vision) and analyzing EEG data col-
lected from nine laboratories around Great Britain. That report
makes four main points: 1) It is important to replicate experi-
mental findings; 2) the prenominal article correlation with grand
average ERPs reported in DUK05 could be a spurious statisti-
cal result; 3) with the same stimuli, generally similar procedures,
more participants (n = 338), and more appropriate statistical
analyses, they failed to observe a reliable effect at the prenom-
inal article with either the potentially problematic average ERP
correlation analysis or planned and posthoc single-trial, linear
mixed-effect regression (LMER) model analyses; and 4) if there
is such an effect, it is relatively small. We concur. The value of
replication is uncontroversial, although rather than simply run-
ning the same experiment over and over, there may be more to

learn from replication and extension, as illustrated by the fol-
lowup studies DeLong conducted in the laboratory between 2005
and 2010 and that we have analyzed anew for this report (SI
Appendix, Table S1, data acquisition and reporting timeline and
references therein). We recognize the limitations of inferences
drawn from correlations between averages and, thus, analyze
single-trial EEG data with LMER models for this report. It is
also clear that NIET18 failed to observe an effect of prenomi-
nal article predictability with the preregistered LMER analysis
of scalp potentials averaged across six scalp locations and a 300-
ms poststimulus interval. However, when the existence of such
an effect is in question, there seems little reason to suppose
that the most informative general answer is to be had by select-
ing one temporal interval and a small set of scalp locations in
advance and drawing inferences about what is or is not going on
throughout the brain, as comprehension processes evolve from
the analysis of this aggregated snapshot. In what follows, we
propose alternatives that build on the strengths of the NIET18
analysis and aim to overcome some of its limitations.

The key empirical premise in the argument for word-form pre-
diction based on the a/an experimental design is that indefinite
article predictability, operationalized as cloze probability, is pos-
itively associated with the amplitude of scalp potentials elicited
by the articles around 400 ms poststimulus over central and pos-
terior scalp—i.e., that article N400 ERP amplitude correlates
inversely with cloze probability. Accordingly, we investigated
this association in three EEG datasets recorded in a/an-design
experiments previously conducted in our laboratory: the original
DUK05 experiment and two replication-extension experiments
that revised and extended the stimulus materials and experimen-
tal conditions. In all three experiments, healthy young adults
read sentences two words per second in central vision as in the
original DUK05 report and NIET18. In contrast with the absence
of evidence reported in NIET18, our exploratory LMER model-
ing of the single-trial EEG data moment-by-moment at 26 scalp
locations finds empirical support for the hypothesized associa-
tion, which, in turn, may reasonably be attributed to prediction
of upcoming word forms.

Exploratory EEG Data Analysis with Regression ERPs. The data from
these three experiments have already been analyzed in a num-
ber of other ways, published and unpublished (SI Appendix,
Table S1), and the results are known. These circumstances rightly
prompt concern about circular analyses, multiple comparisons,
and p-hacking when choosing which and how among the many
available hypotheses to test with confirmatory null hypothesis
tests (e.g., refs. 25–28). Since accept-or-reject-at-α confirma-
tory null-hypothesis testing is not appropriate, we present a
series of data-driven exploratory analyses, along with what Tukey
terms rough confirmatory assessments of strength of evidence—
i.e., a flexible data investigation in the sense he contrasts with
the rigid steps of data processing and confirmatory hypothesis
tests (29–31). Consequently, in concept and execution, the anal-
yses reported herein have more in common with the iterative
phases of model development, diagnosis, evaluation, and selec-
tion found in applied statistical modeling than in boilerplate data
processing that passes from EEG recordings to results through a
predetermined sequence of steps and declares victory by reject-
ing (or failing to reject; refs. 15, 23, and 24) a null hypothesis at
P< 0.05. Researchers intrigued or outraged by this approach will
find an engaging manifesto in Tukey’s “Badmandments” (ref. 32,
prologue), a clear overview for psychologists in Behrens (33),
and methodological guidance in standard texts, e.g., Cohen, et
al. (ref. 34, chapters 4 and 10), Fox (ref. 35, Data Craft: chapters
2–4), and Kutner et al. (ref. 36, chapters 9 and 10 and figure 9.1).

Our exploratory analyses used the same class of LMER models
as NIET18 and differed primarily in that we evaluated a greater
variety of models and modeled the data at a higher spatial and
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temporal resolution in the regression ERP (rERP) framework
recently described and motivated by Smith and Kutas (ref. 37
and references therein for related approaches). For these anal-
yses, we sweep an LMER model across the single-trial EEG
and fit the data for all subjects and items at each time point of
the digital recording. As Smith and Kutas point out, modeling
the EEG data in this manner is a generalization of conven-
tional sum-and-divide time-domain averaging. For a set of n
single-trial EEG epochs (segments of the recording), each time-
aligned to an experimental event of interest, the time-domain
average ERP(t) = 1

n

∑n
i=1 EEGi(t) at time t is mathematically

identical to the estimated intercept, β̂0, of an intercept-only
linear model of the same data, EEG(t) =β0 + ε, fit by ordi-
nary least-squares regression. This means plotting, measuring,
analyzing, and interpreting time-domain average ERP wave-
forms and the time series of estimated linear model intercepts,
β̂0(t), are literally one and the same. This approach gener-
alizes to more complex models, notably, multiple-regression
models that may include continuous and categorical predictor
variables, and other classes of models including linear mixed-
effects models. For models with multiple predictor variables, e.g.,
EEG(t) =β0 +β1X1 + · · ·+βJXJ + ε, fitting the model yields
a time series of estimated coefficients, β̂j (t), for each regressor,
Xj , the waveforms that Smith and Kutas dubbed rERPs. Further-
more, besides the estimated model parameters, fitting a model
at each time point also yields the corresponding time series of
residual errors and derived quantities, such as error variance,
coefficient SEs and CIs, and goodness-of-fit measures. Model-
ing time-series data is nothing new; the key insight of the rERP
framework is that the logic of conventional event-related time-
domain averaging extends to event-related time-domain model-
ing more generally, and thereby to the investigation of event-
related brain activity by methods and procedures from applied
statistical data modeling developed to fit, diagnose, compare,
and interpret different models. The endgame is to determine
which model(s), among the many possible, are likely to better
or best account for systematic relationships between predictor
and response variables, i.e., between experimental variables and
event-related brain activity. Determining the existence and form
of these associations is the first (though not last) step in causal
inference.

Approach
To investigate the association, if any, between the predictability
of articles and the brain responses they elicit during word-by-
word reading, we swept LMER models across single-trial EEG
recordings before, during, and after the onset of articles that
vary in cloze probability. We make inferences based on the time
course and scalp distribution of model goodness-of-fit measures
and rERPs. Details and further discussion appear in Materials
and Methods and SI Appendix. The analysis reproduction recipe,
open-source scripts, and additional figures are available online
at the Open Science Foundation (OSF): UDCK (https://osf.io/
tksur/) (38).

EEG Data: Three Experiments. After the original study reported in
DUK05, DeLong and colleagues continued to investigate aspects
of predictive processing in younger and older adults. For this
report, we selected two additional studies conducted between
2005 and 2010 that incorporated the a/an prenominal indefi-
nite article manipulation and extended the original study design
with additional conditions and materials (see SI Appendix, Table
S1 for a summary and references). The rationale for selecting
these particular studies is that they tested healthy young adults
reading two words per second in central vision, which affords a
close comparison between and across the original DUK05 and
NIET18 studies. Furthermore, the additional materials devel-

Table 1. EEG experiment participants, items, and article cloze

Observed article cloze

E P I N M SD Range

1 32 80 2,136 (0.16) 0.38 0.35 0.0 to 0.97
2 32 160 4,668 (0.07) 0.44 0.41 0.0 to 1.0
3 24 240 5,232 (0.08) 0.39 0.38 0.0 to 1.0
All 88 320† 1,2043 (0.10) 0.408 0.389 0.0 to 1.0

E, EEG experiment. I, number of items in the experimental design for
modeling item as a random variable. Each item corresponds to the context
prior to the critical article and provides one cloze value for a and one for
an (see SI Appendix for article-cloze distributions and data exclusions). N,
number of single trials analyzed after excluding EEG artifacts (proportions
in parentheses) and stimulus irregularities (0.01). P, number of participants.
The observed article-cloze mean (M) and SD (SD) on each row are computed
for the single-trial data on that row and may be used to transform estimated
regression coefficients for standardized article cloze back to the original
cloze scale of 0 to 1. †Experiment 3 used 160 of the same prearticle item con-
texts as experiment 2 and added 80 new ones, 80 + 160 + 80 = 320 distinct
items. Modeling item random effects takes this into account (SI Appendix,
Stimulus and Item Coding).

oped by revising and extending the DUK05 materials fill in
gaps in the distribution of contextually supported noun and the
corresponding prenominal article cloze values in the DUK05
materials. This makes the pooled datasets appropriate for mod-
eling article-cloze probability as a continuous predictor. So, for
this report, we pooled the data from these three studies and mod-
eled approximately 12,000 single-trial epochs (Table 1), recorded
at 26 scalp locations spanning the interval from about 1.5 s before
to 1.5 s after the critical article (Materials and Methods and SI
Appendix, EEG Experimental Procedures).

Modeling: Linear Mixed-Effects rERPs. To characterize the time
course and scalp distribution of article-cloze effects in the rERP
framework, we swept each of the LMER models in Table 2 across
the single-trial EEG data and computed the lme4::lmer() pro-
filed maximum likelihood (ML) fit for the 1.2e4 observations at
each time point and each channel (39). For exposition, Table 2
presents the models in the formula language of lme4, which spec-
ifies LMER models in two parts: the “fixed effect” predictor
terms and the “random effect” terms enclosed in parentheses.
This syntax aligns with a matrix equation specification of the
model, y = Xβ + Zb + ε, that shows the observed response vari-
able y modeled in two parts as the sum of β-weighted regressors
for fixed effects (Xβ) and b-weighted regressors for random
effects (Zb). For an introduction to LMER modeling in psychol-
ogy experiments, see the development of equation 9 in ref. 40,
and see ref. 39 for a formal treatment of the model and fitting
algorithms.

To highlight the approach in this report, we can unpack Xβ
as the column vectors, X = [1, xcloze], a column of ones and the
per-item article cloze values, and the scalar coefficients, β =
[β0,βcloze] for the intercept and article cloze:

EEG =β01 +βclozexcloze + Zb + ε. [1]

The analyses that follow map neatly onto the terms of Eq. 1.
First, to select random effects for subjects, items, and experi-
ments, we compared models with different Zb (Fig. 1). Second,
to evaluate evidence for an association between article cloze
and scalp potentials, we compared (full) models like Eq. 1
that include the article-cloze regressor, xcloze, with correspond-
ing (reduced) models that do not (Fig. 2). Third, the LMER
ERP (lmerERP) waveforms are the estimated coefficients for
the intercept, β̂0, and article cloze β̂cloze over time for each EEG
channel (Fig. 3).
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Table 2. Linear mixed-effects models as lme4 formulae

Formula

Random effects
Maximal

M0 cloze + (cloze | expt) + (cloze | subject) + (cloze | item)
Drop 1 slope

M1 cloze + (cloze | expt) + (cloze | subject) + (1 | item)
M2 cloze + (cloze | expt) + (1 | subject) + (cloze | item)
M3 cloze + (1 | expt) + (cloze | subject) + (cloze | item)

Drop 2 slopes
M4 cloze + (cloze | expt) + (1 | subject) + (1 | item)
M5 cloze + (1 | expt) + (cloze | subject) + (1 | item)
M6 cloze + (1 | expt) + (1 | subject) + (cloze | item)

Drop 3 slopes
M7 cloze + (1 | expt) + (1 | subject) + (1 | item)

Drop 1 random term
M8 cloze + (1 | subject) + (1 | item)
M9 cloze + (1 | expt) + (1 | subject)
M10 cloze + (1 | expt) + (1 | item)

Article cloze fixed-effect
comparisons
KIM

M5 cloze + (1 | expt) + (cloze | subject) + (1 | item)
M5r (1 | expt) + (cloze | subject) + (1 | item)

KIP
M7 cloze + (1 | expt) + (1 | subject) + (1 | item)
M7r (1 | expt) + (1 | subject) + (1 | item)

Experiment as a fixed effect
KIM

M11 cloze + expt + (cloze | subject) + (1 | item)
M11r expt + (cloze | subject) + (1 | item)

KIP
M12 cloze + expt + (1 | subject) + (1 | item)
M12r expt + (1 | subject) + (1 | item)

Experiments 1, 2, and 3
modeled separately
KIM

M13 cloze + (cloze | subject) + (1 | item)
M13r (cloze | subject) + (1 | item)

KIP
M14 cloze + (1 | subject) + (1 | item)
M14r (cloze | subject) + (1 | item)

Fixed and random intercepts are implicit and modeled by default.

Model Evaluation: Akaike Information Criterion and ∆i . To have
the same metric for comparing larger sets of models en masse
and model pairs (41), we evaluated models on estimated Akaike
information criterion (AIC). In outline, the general form of
the AIC = −2 log(L) + 2K rewards goodness-of-fit through the
maximized likelihood, L, of the model given the data, while
penalizing model complexity in proportion to the number of
model parameters, K . Better-fitting models of the same data
have larger likelihoods, hence smaller−2 log(L) (deviance). Sim-
pler models have fewer parameters, i.e., smaller K . So, among
a set of models of the same data, the better-fitting, simpler
model(s), Mi , have lower AIC values than worse-fitting and/or
more complex models. We evaluated the degree of empirical
support for models in a set according to Burnham and Ander-
son’s heuristics for ∆i = AICi −AICmin, the difference between
the AIC for model, Mi , and the minimum AIC among models
being compared: “models having ∆i ≤ 2 have substantial support
(evidence), those in which 4≤∆i ≤ 7 have considerably less sup-
port, and models having ∆i > 10 have essentially no support”
(ref. 42, pp. 270–271). Critically, these heuristics treat AIC dif-
ferences less than two as meaningless for model selection—i.e.,

they characterize evidential ties and begin to look for AIC differ-
ences around four or greater to differentiate alternative models.
Taken together, the AIC and heuristics comprise a practical
general framework for investigating—comparing and selecting
among—sets and pairs of models with fixed and random effects
(SI Appendix, AIC Model Selection).

Random-Effects Selection. There is some debate in the recent
mixed-effects modeling literature about whether maximal or par-
simonious random effects are appropriate for hypothesis testing
with LMER models (43, 44). The debate turns, in part, on how
the decision to include, e.g., random slopes in addition to random
intercepts impacts the rate of incorrect null hypothesis rejections
(type I errors) vs. loss of power and failure to reject the null
hypothesis (type II errors). We took the present project as an
opportunity to evaluate the consequences of the decision as a
case study of exploratory data analysis. Specifically, among the
11 candidate models with random effects ranging from maximal
to minimal, M 0, . . . ,M 10 (Table 2), we selected two for further
investigation according to different decision rules: “Keep It Max-
imal” (KIM), select the maximal random effects for which the
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Fig. 1. The time course and scalp distribution of AIC ∆Mi comparisons among models in the set {M0, . . . , M10} (Table 2). Each panel, ∆Mi , indicates how the
AIC for model Mi compares with the best-supported model (minimum AIC) among the 11 candidates at each time point and channel: ∆Mi = AICMi −AICmin.
Since there is always some minimum AIC, somewhere among the models, ∆Mi = 0. As the panels show, this varies by time point and channel. The x axis
is time in milliseconds; vertical lines indicate stimulus word onsets, and critical-article onset is at 0. The rainbow line plots show the time course of ∆Mi (y
axis) for each channel in colors given by the channel legend; horizontal lines indicate the Burnham and Anderson (42) ∆i heuristic intervals bounded by
2, 4, 7, and 10. A few values for M9 and most for M10 are above 50 and not shown. The adjacent blue and red raster plots show the same data: Darker
colors correspond to larger ∆Mi values; shading levels correspond to the heuristic intervals. EEG channels are arrayed on the y axis in the order given by the
channel color legend: The top 11 rows are the left hemiscalp, the next four are midline, and the bottom 11 rows are the right hemiscalp. At a glance, the
lightest patches among the raster plots indicate the best-supported (or equally well-supported) model(s) in the set (0≤∆Mi ≤ 2), and darker patches indicate
that the model is less well supported than an alternative (∆Mi > 2). Times and channels where lme4::lmer() fitting generated a warning are indicated with
red. Models M5 and M7 were selected for further investigation, based on the KIM and KIP selection rules, respectively. These results are for models fit to
approximately 1.2e4 single-trial observations at 8-ms intervals and 26 EEG channels (Table 1).

model converges reliably; and “Keep It Parsimonious” (KIP),
select the simplest random effects for which the model converges
reliably and does not have substantially less support than the
alternatives (∆Mi ≥ 4).

Evidence for an Article-Cloze Effect: ∆M and lmerERPs. The critical
empirical question is whether there is an association between
article cloze and scalp potentials generated by brain activity in
response to encountering those articles. We approached this in
two ways, based on fitting the models selected by the KIM and
KIP decision rules: 1) We computed ∆M and ∆Mr for the full and
corresponding reduced model pairs, taking ∆Mr > 4 as indica-
tive of substantially less support for the reduced model; and 2)
we examined the magnitude and CIs of the article-cloze (slope)
rERPs for the full model.

The possible outcomes and interpretations of this rERP mod-
eling are straightforward. If the article cloze and scalp potentials
are unrelated, including article cloze in the model should have
little impact on the goodness-of-fit, and ∆M for the full vs.
reduced model should be around two because of the AIC penalty
for the additional parameter. And in this same case, the article-
cloze (slope) rERP waveforms should tend to be around zero
plus or minus random variation, i.e., the x–y trend line for arti-
cle cloze (x) vs. EEG (y) at each point in time should tend to
be flat. Alternatively, if there is an approximately linear associ-
ation between article-cloze probability and scalp potentials, the
deviance term of the AIC for the full model should be smaller.
In this case, the extent to which ∆Mr for the reduced model is
greater than two indicates the degree to which the full model
is better supported by the data after adjusting for its increased
complexity, with ∆Mr > 4 indicating a substantial difference in
support. Furthermore, the time course and scalp distribution of

the ∆Mr values and lmerERPs are important. To support the
inference that the potentials are generated by a brain response
to the article, an AIC ∆Mr effect should be evident in the inter-
val after article onset, and not before. Likewise, the article-cloze
(slope) rERP waveforms should tend to hover around zero prior
to article onset and then deviate from zero afterward, with the
polarity of the deviation, positive or negative, indicating the
direction of the association (correlation).

Taken together, the full vs. reduced model pair ∆i values
and the magnitude of the lmerERPs relative to their CIs are
the basis of our evaluation of the strength of evidence for an
article-cloze effect, the rough confirmatory analysis in Tukey’s
sense. In Tukey’s view (ref. 31, p. 24), strong confirmatory
null hypothesis testing requires designing, executing, and ana-
lyzing an experiment to ask and answer one question, thereby
reducing the entire project to a single bit of information—one
or zero, significant or not (ref. 32, p. 277). By contrast, our
exploratory modeling aims to gauge where and when and to what
extent—if any—there is evidence to support a linear approxi-
mating model of the relationship between article cloze and scalp
potentials.

Results
The following summarizes the main findings in the critical inter-
val from 1.5 s before article onset up to the onset of the following
word. Note that Figs. 1–3 display the 3 s of data modeled, which
spans the two words after the article.

Random-Effects Selection. The LMER models M0, M1, . . ., M10
(Table 2) hold constant the intercept and fixed effect of article
and vary the random effects. Fig. 1 shows there is no unique
best supported model with minimum AIC at all time points
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Fig. 2. AIC ∆M pairwise full vs. reduced LMER model comparisons. (A) KIM: full (M5) vs. reduced (M5r). (B) KIP: full (M7) vs. reduced (M7r). Axes, scales, and
data are as in Fig. 1. A and B, Top and Middle show AIC ∆M and ∆Mr for the full and reduced models, respectively, across the 3-s epoch, article onset at zero.
The insets in A and B, Bottom zoom in to show AIC ∆Mr for the reduced model at the critical prenominal article in more detail. For both comparisons, during
the 1.5-s interval preceding the critical article, the full and reduced models are equally supported, ∆M and ∆Mr < 2, with a few idiosyncratic exceptions.
During the interval around 300 to 500 ms following the article onset (highlighted in magenta), the reduced models are substantially and systematically less
supported at bilateral posterior scalp locations, ∆M5r and ∆M7r > 4, as indicated in by traces above four in the rainbow line plots and darker blue bands in
raster plots.

and EEG channels—i.e., no single model where ∆Mi = AICMi−
AICmin = 0. However, some models were much less supported
than others in the 1.5-s prearticle to 0.5-s postarticle interval,
and we selected two for further investigation. First, in accord
with both decision rules, we ruled out models with substantial
numbers of fitting warnings (M0, M1, M2, M3, M4, and M6),
each of which included item or experiment random slopes for
article cloze. Of those remaining, in accord with the KIM deci-
sion rule, we selected M5 with random intercepts for experiment,
subject, and item and a random slope for subjects as the model
with the maximal random effects that reliably converged, KIM
M5: cloze + (1 | expt) + (cloze | subject) + (1 | item). We
examined the remaining models with simpler random effects
and, unsurprisingly, found intervals of substantially less support
(∆Mi > 4) for models that dropped any one of the experiment,
subject, or item random variables entirely (M8, M9, or M10).
Consequently, in accord with the KIP rule, we selected model
M7 with random intercepts for experiment, subject, and item
as the model with the most parsimonious random effects that
was well-supported by the design and the data, KIP M7: cloze +
(1 | expt)+(1 | subject) + (1 | item). Neither the KIM (M5) nor
KIP (M7) models were entirely free of fitting warnings, but these
were scattered irregularly across the times and channels and few
in number, especially during the interval of interest. Although
KIM and KIP decision rules may represent different extremes,
in this particular instance, the models selected, M5 and M7, dif-
fered only in whether or not to include an article random slope
for subjects.

Evidence for an Article Cloze Effect. With the KIM (M5) and KIP
(M7) models selected for further investigation, we turned to the
research question of primary interest: Is there evidence of an

association between article predictability and scalp potentials?
We addressed this by pairwise AIC model comparisons between
the full and reduced KIM (M5 and M5r) and KIP (M7 and M7r)
models (Fig. 2) in conjunction with the values of the estimated
coefficients for the article-cloze predictor in the full models,
β̂cloze—i.e., the article-cloze rERPs (Fig. 3B).

We note first that ∆M5 and ∆M7 for the full KIM and KIP
models, respectively, accord with the definitions of AIC and ∆M.
These values range between zero and two at all times and chan-
nels (Fig. 2, Top), except for a few anomalous values, where
the fitting failed to converge for the maximal model M5. These
expected results support the face validity of the AIC estimates
and ∆M calculations, which appear to be generally well-behaved
for these models and data.

The key evidence for an article-cloze effect is observed at
those scalp locations and times where the reduced models ∆M5r
and ∆M7r values are > 4, indicating a substantial decrease in
goodness-of-fit when the article-cloze predictor is omitted from
the model. For these reduced models (Fig. 2, Middle and Bot-
tom), there are two intervals of immediate interest: the prestim-
ulus interval (−1.5 to 0 s) and the critical article (0 to 0.5 s).
The interval spanning the words immediately following the arti-
cle (0.5 to 1.5 s), is relevant as well, albeit less directly, as we
touch on in Discussion.

Prestimulus ∆M. During the 1.5 s preceding the onset of the crit-
ical article, values for the reduced KIM model range between
zero and two (Fig. 2A, ∆M5r), with occasional irregular values
above two (indicated by the darker blue speckles) and, again, a
few anomalously large AIC values coincident with model-fitting
warnings. The findings for the reduced KIP model with the par-
simonious random effects are similar (Fig. 2B, ∆M7r), except that
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Fig. 3. Model M5 linear mixed-effects rERPs (3 s, 26 channels). Solid lines
plot the estimated regression parameter over time (milliseconds) relative
to critical article onset at zero; bands indicate 95% CIs, and positive val-
ues are plotted up. Anterior to posterior scalp locations are arrayed from
top to bottom in each panel. (A) Intercept lmerERPs (β̂0) are analogs of
grand mean average ERPs and show the characteristic morphology of visual
evoked-potential responses, sharply defined transient peaks and troughs,
especially prominent over the lateral occipital scalp. (B) Article-cloze lmer-
ERPs (β̂cloze) characterize the slope of the straight-line relationship between
standardized article cloze and scalp potentials as it evolves over time. The y
axis is µV per unit standardized cloze. The cloze lmerERPs show a transient
positive response, predominantly over the bilateral posterior scalp, around
300 to 500 ms after article onset (magenta highlight) and not before, indi-
cating a positive association between cloze probability and scalp potentials
in response to the critical prenominal articles.

there are fewer fitting warnings and no anomalous ∆M7r excur-
sions. Since ∆M≤ 2 for the most part during the prestimulus
interval, and rarely > 4, we conclude that support for the full
and reduced models does not differ substantially in this interval
for either the KIM or KIP random effects. This evidential tie in
the prestimulus interval is instructive for what it does not show.
Given the design of the experiment, and the epoch centered on
the entire 1.5-s prestimulus baseline, an effect of article pre-
dictability should be evident upon encountering the article, but
not before. If the modeling showed an article-cloze effect prior
to article onset, it could indicate something amiss in the design or
execution of the experiments, the model specification or fitting,
or the model comparison metric. In so far as we can determine
with the present approach, examination of the 1.5 s of prestimu-
lus activity for the 26 scalp locations at 8-ms intervals reveals no
clear indication of these potential defects. Consequently, we sup-
pose that article cloze effects observed in the interval following
article onset may reasonably be attributed to a brain response to
the article.

Critical Article ∆M . Following the onset of the critical a/an indef-
inite articles, the AIC differences between the full and reduced
models do not appear to be dramatically different from those in
the prestimulus interval until about 300 ms poststimulus. Then,
between around 300 ms and the onset of the next word, AIC
values for the reduced models, M5r and M7r, are systematically
larger, predominantly over the bilateral posterior scalp, peaking
around 400 ms (Fig. 2 A and B, Bottom, magenta highlight). This
increase was not observed over the anterior scalp. The results for
the KIM and KIP models are similar: The KIP model ∆M7r values
are slightly larger in some cases, there are fewer fitting warn-
ings, and no anomalously large AIC values. For both the KIM
and KIP comparisons, there appears to be an oscillation around
10 Hz in the reduced models (∆M5r, ∆M7r) during the interval 300
to 500 ms poststimulus, and perhaps earlier, over the posterior
scalp. These oscillations may indicate residual alpha-band noise
EEG, though the possibility of an event-related 10-Hz ampli-
tude modulation should not be overlooked. These oscillations
make evaluation of the time course of AIC differences on a scale
below about a 10th of a second precarious, but the slower phasic
response is evident with or without the oscillations. We interpret
this phasic increase in ∆M5r and ∆M7r above four for the KIM
and KIP pairwise model comparisons as empirical support—
rough confirmation—of a systematic association between article
cloze and scalp potentials 300 to 500 ms over the posterior
scalp. This effect is the crux of the argument for word-form
prediction.

Article-Cloze lmerERPs. Whereas the full vs. reduced model AIC
comparisons indicate when (around 300 to 500 ms poststimu-
lus) and where (bilateral posterior scalp) there is evidence of
an article-cloze effect, the magnitude and polarity of the esti-
mated rERP slope coefficients characterize the magnitude and
direction of the association under the assumption of a linear rela-
tionship. We found that the magnitude and CIs for the KIM and
KIP intercept (β̂0) and article cloze (β̂cloze) lmerERPs are essen-
tially indistinguishable over the entire 3-s epoch (SI Appendix,
Fig. S4), and we present results here for the KIM model only
(Fig. 3).

The model intercept lmerERPs (β̂0) are the rERP analog of
grand mean average ERPs. These show the morphology char-
acteristic of visual evoked potentials, a series of six transient
responses to the six words presented two per second over the 3-s
epoch (Fig. 3A). For the critical article cloze lmerERPs (β̂cloze),
we found that, prior to the onset of the article, they hovered
around zero, and the 95% CIs for the point estimates gener-
ally span zero (Fig. 3B). Then, following the onset of the critical
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article, we observed a biphasic positive response. The first phase
began around 300 ms after the article, was larger predominantly
over the posterior scalp, increased to a peak around 400 ms, and
then decreased until shortly after the onset of the following word.
The polarity of this deflection indicates a positive association,
i.e., as cloze probability of an article increases, scalp potentials
over the posterior scalp become more positive. This interval,
about 300 to 500 ms postarticle, was the first time in the epoch
where the lower bound of the 95% CI for the article-cloze rERP
was above zero for sustained periods. A second, larger phasic
positive deflection was observed, peaking around 400 ms after
the word following the article, with a time course and scalp dis-
tribution corresponding to the larger second phase of increased
AIC ∆Mr for the reduced KIM and KIP models that emerged
after the onset of the word following the article (Fig. 2 A and B,
Middle).

In sum, we observed what appears to be a systematic, event-
related lmerERP response to the article with a polarity, latency,
and scalp distribution that coincide with previously reported
reductions in N400 ERP amplitude with increasing cloze proba-
bility. We interpret this as direct evidence that the brain response
to the article systematically covaries with the predictability of the
indefinite articles a and an. To the extent the predictability of the
article is dependent on the predictability of the not-yet-presented
noun and its initial speech sound, the positive-going phasic arti-
cle cloze lmerERP response is reasonably interpreted as indirect
evidence for word form prediction.

Interim Summary
When we modeled about 12,000 EEG single trials moment by
moment at 26 scalp locations with appropriate linear mixed-
effects models, we found that models that included article cloze
probability as a predictor variable did a substantially better job
accounting for the variability in potentials recorded over the pos-
terior scalp around 300 to 500 ms after the onset of the article.
The face validity of the modeling generally, and pairwise AIC
model comparison results in particular, are bolstered by the facts
that 1) ∆M≤ 2 for the full models are in line with theory; 2)
the full and reduced models are equally supported during the
prestimulus interval when no difference is expected; and 3) the
direction of the observed positive association between article-
cloze probability and scalp potentials characterized by the slope
rERPs agrees with the reported reductions in average N400 ERP
amplitude with increasing cloze probability (19, 45). As best we
could determine, for these data, the perhaps-contentious choice
to fit models with maximal or parsimonious random effects made
little difference for characterizing the time course, scalp distribu-
tion, or strength of empirical support for the article-cloze effect
based on model comparisons or for estimating the fixed effect of
article cloze—i.e., the magnitude and precision of the lmerERP
estimates.

Followup Analyses
Since exploratory data investigation arrives at conclusions
through an iterative process of evaluating assumptions and
alternatives, we conducted a number of followup analyses, sum-
marized briefly here (see SI Appendix for further details and
discussion).

Influential Data Diagnosis. A general issue for the interpretation
of estimated regression model coefficients is whether subsets of
extreme or outlying observations exert a disproportionate influ-
ence on estimates and exaggerate (or obscure) patterns seen
in the bulk of the data. For modeling the time course of the
article-cloze effect, this question is whether the morphology of
the lmerERP waveforms, in particular, is driven by a subset of
unrepresentative data. Mixed-effects modeling is computation-
ally intensive, and influence diagnostics based on model refitting

are intractable for data on the scale of this analysis at present,
so we fell back to ordinary least squares (SI Appendix, Influ-
ential Data Diagnosis). We identified and excluded a subset of
about 5% of the single-trial epochs that contained the high-
est proportion of potentially influential observations. We then
refit the KIP and KIM models to this trimmed dataset and com-
puted how much the amplitude of the intercept and article cloze
lmerERPs changed as a consequence of the trimming—i.e., we
computed a version of the scaled deleted observation differ-
ence in beta (DFBETAS) data diagnostic, adapted for rERPs.
We assumed that article-cloze DFBETAS ±2 would indicate
an unusually large change in the rERP estimate based on a
large n Student’s t distribution (35). We found that there were
few DFBETAS excursions of that magnitude, and those that
occur do so at the peaks and troughs of approximately 10-Hz
oscillations (SI Appendix, Fig. S6). This oscillation suggests that
the epochs identified and excluded contained high-amplitude
alpha-band activity. Crucially, the time course and distribution
of ∆Mr values for the reduced KIM (M5r) and KIP (M7r) mod-
els of the trimmed data still showed the phasic increase over
posterior scalp around 300 to 500 ms, and the article-cloze lmer-
ERPs (β̂cloze) showed the corresponding positive deflection (SI
Appendix, Fig. S7). So it appears that the article-cloze effects
observed in the initial analysis were not driven entirely by this
subset of potentially influential trials.

Modeling Experiment as a Fixed Effect. The designs and proce-
dures of EEG experiments 1, 2, and 3 are sufficiently similar
to justify pooling the data for purposes of modeling the brain
response to the critical indefinite articles, provided that sys-
tematic variation between the experiments is also accounted
for. Since, for our purposes, systematic differences between the
experiments is nuisance variation and the different numbers
of trials in the three experiments make the design substan-
tially unbalanced, we modeled experiment as a random variable.
However, views may differ on the appropriate treatment of cat-
egorical variables as fixed vs. random, and the consequences for
drawing model-based inferences, particularly when the number
of levels is small (for discussion, see ref. 46, p. 20ff and ref. 47,
pp. 246 and 275ff). So, we investigated the question by mod-
eling the single-trial EEG with article cloze and experiment as
fixed effects, retaining the KIM and KIP random effects for sub-
jects and items; Table 2 KIM (M11 and M11r) and KIP (M12
and M12r). We found that fitting full and reduced models with
experiment as a fixed effect converged reliably, and the pattern
of AIC ∆M and ∆Mr for the pairwise full vs. reduced model com-
parisons, and article-cloze rERPs and their CIs were essentially
the same as for models with a random intercept for experiment
(SI Appendix, Fig. S8). So, in this instance, the choice of fixed
vs. random effect for the experiment variable was immaterial for
inferences about the article-cloze effects.

Modeling Experiments 1, 2, and 3 Separately. To assess whether
the article-cloze effect observed for the data pooled across the
three experiments was representative of each experiment indi-
vidually, we split the data by experiment and fit the full and
reduced model pairs in Table 2: KIM (M13 and M13r) and KIP
(M14 and M14r). For each experiment, we examined AIC ∆M
and ∆Mr measures and the article lmerERPs (experiment 1, SI
Appendix, Fig. S9; experiment 2, SI Appendix, Fig. S10; and exper-
iment 3, SI Appendix, Fig. S11). The results were mixed for the
AIC model comparisons and somewhat more consistent for the
article-cloze lmerERPs. For the experiment 1 data, fitting the full
and reduced models with KIM random effects had considerable
difficulty converging. Fitting the full and reduced KIP models
converged reliably with irregular intervals of ∆M14r > 4 through-
out the 3-s epoch and no clear break in the pattern between the
prearticle and postarticle interval that suggests an event-related
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brain response to the article. So, the AIC model comparisons
did not provide clear evidence for a relationship between arti-
cle cloze and an event-related EEG response in experiment 1.
For the experiment 2 data, the KIM and KIP models converged
reliably with only a modest increase in convergence failures for
the KIM models. Overall, the time course and scalp distributions
were generally similar to those for models of the data pooled
across all three experiments, with scattered idiosyncratic ∆M13r >
4 in the prestimulus interval and a systematic onset and offset
around 300 and 500 ms postarticle, respectively. For the experi-
ment 3 data, there are slightly more convergence failures for the
KIM models, and prestimulus AIC differences for the reduced
model are evident, more so for the KIP comparison, though not
to the extent observed for experiment 1. In the critical interval
around 300 to 500 ms postarticle, AIC differences larger than
in experiment 1 and smaller than experiment 2 rise and fall. In
all three experiments, the article-cloze lmerERPs tended to vary
around zero prior to the critical article onset, after which they
showed a small positive deflection followed by a larger one over
the bilateral posterior scalp. The onset of this rERP response
in experiment 1 appears to be perhaps 100 to 200 ms later than
in experiments 2 and 3, though the timing in experiment 1 was
obscured by a pronounced oscillation around 10 Hz. In sum, the
AIC ∆M results observed for the data pooled across the experi-
ments appeared to be more representative of experiments 2 and
3 than experiment 1. The pattern of article-cloze slope lmerERPs
was more consistent, and all three experiments showed a simi-
lar, albeit more variable, biphasic positive response following the
article, similar to that observed for the pooled data.

LMER Modeling Interval Mean Amplitude. Whereas the rERP anal-
yses described thus far model the moment-by-moment time

course of the article-cloze effect from 1.5 s before to 1.5 s
after the article, experimental EEG studies using event-related
designs, including DUK05 and NIET18, often base inferences
about event-related brain responses on measurements of scalp
potentials aggregated over a specific time interval—e.g., mean
amplitude between 200 or 300 and 500 ms poststimulus—relative
to mean amplitude in a specified prestimulus baseline interval—
e.g., 100, 200, or 500 ms. To compare the LMER rERP results
with interval mean amplitude analyses, we reduced the single-
trial EEG time-series data to four sets of summary measures:
mean amplitude in two poststimulus intervals (200 to 500 ms and
300 to 500 ms), each measured relative to a baseline of mean
amplitude in two intervals (100 and 500 ms prestimulus). We
then modeled these single-trial time-averaged mean amplitude
measurements by fitting the KIM (M5 and M5r) and KIP (M7
and M7r) model pairs at each of the 26 EEG channels separately
(c.f., NIET18 LMER analyses of mean potentials aggregated in
the interval 200 to 500 ms poststimulus across six centro-parietal
scalp locations).

Consistent with the lmerERP time-course analysis, model-
ing the potentials averaged across these temporal intervals also
found a positive association between article cloze, with a poste-
rior scalp distribution (Fig. 4). Across the different combinations
of model random effects, baseline intervals, and N400 mea-
surement intervals, only the poststimulus measurement inter-
val had much impact on the results (OSF: udck19 pipeline 5.
html; https://osf.io/hbgfs/). Regardless of the random effects or
prestimulus baseline interval, the magnitudes of the estimated
article-cloze coefficients for the longer and earlier 200- to 500-ms
poststimulus interval measurements tend to be around 1

3
smaller

than for the measurements made 300 to 500 ms poststimulus
(Fig. 4A vs. Fig. 4B). Attenuated article effects in the 200- to

A 200–500 ms

B 300–500 ms

cloze

LMER models of single-trial EEG mean amplitude following the critical article

Fig. 4. Comparison of KIM models M5 and M5r of single-trial mean EEG amplitude measured in a longer, earlier-starting interval 200 to 500 ms poststimulus
(A) and a shorter, later-starting interval 300 to 500 ms poststimulus (B). A and B, Left show the AIC ∆M5r values for the pairwise full (M5) vs. reduced (M5r)
KIM model comparison. ∆M5 for the full model (not shown) was between zero and two, as expected for this comparison. A and B, Right show the magnitude
of the estimated fixed-effect coefficient for article cloze, β̂cloze, with positive values in red and with filled circles only at locations where the 95% CI for the
estimate did not include zero. Like the temporally fine-grained rERP models, this single-trial LMER modeling indicates a positive association between article
cloze and potentials over the bilateral posterior scalp around 400 ms poststimulus, albeit more robust for the shorter and later interval 300 to 500 ms post-
stimulus. Results in this figure are for poststimulus potentials measured relative to mean amplitude in a 500-ms prestimulus baseline; results for measurements
relative to a 100-ms prestimulus baseline were similar. See (OSF: udck19 pipeline 5.html; https://osf.io/hbgfs/) for these and additional analyses.
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500-ms postarticle interval are consistent with the time-course
rERP modeling, which found no clear evidence of the article
effect before 300 ms poststimulus.

Lurking Variables and Spurious lmerERPs. Another general issue
for the interpretation of an estimated regression model coef-
ficient is the spurious effect that can result from a “lurking”
variable—i.e., a variable that is causally related to the response
variable and correlated with the predictor, but omitted from the
model (for discussion, see SI Appendix, pp. 6 to 8). If the article-
cloze lmerERPs in Fig. 3 are driven purely by correlation with
some causal factor unrelated to the form of the indefinite arti-
cle, interpreting them as support for word-form prediction would
be unwarranted. The impact of a lurking variable on a regres-
sion coefficient can be quantified as the omitted variable bias
(e.g., ref. 35, pp. 111–112), which we used to investigate the
impact of a variable known to be correlated with article cloze,
but unrelated to the form of the indefinite article.∗ Since our
normative stimulus testing was free response, the proportion
of indefinite articles goes down as the proportion of nonarti-
cle responses (e.g., bare plurals, adjectives, or definite articles)
goes up. The article and nonarticle cloze probabilities are nega-
tively correlated (r = −0.264, P < 0.0001; SI Appendix, Fig. S12).
We modeled the nonarticle-cloze rERP (SI Appendix, Fig. S13)
and found that, despite this correlation, the omitted variable bias
does not account for the article-cloze lmerERP (SI Appendix,
Fig. S14). Numerous variables are associated with article cloze
and scalp potentials to some degree. However, unless the corre-
lations are strong and the omitted variable rERPs are large, the
bias is small and, thus, unlikely to account for the article-cloze
effect.

Discussion
The project reported herein aims to shed light on the recent
theoretical controversy about whether the human-language com-
prehension mechanism anticipates the phonological form of
upcoming words. The crucial empirical question is whether
processing at the prenominal articles a/an varies with their pre-
dictability since, other things equal, the factor responsible for
the form of the indefinite article is the initial speech sound of a
not-yet-encountered word. Because of this phonological depen-
dency, direct evidence of an effect of predict-ability at the article
may be reasonably interpreted as indirect evidence that, by then,
upcoming noun word forms were predict-ed.

To investigate the time course of the electrical brain activity,
we modeled single-trial EEGs recorded before, during, and after
presentation of pre-nominal indefinite articles (a/an) in three
experiments that manipulated the predictability (cloze proba-
bility) of nouns in sentence contexts read by healthy younger
adults at two words per second in central vision. Our interim
conclusion was that models that include article-cloze proba-
bility as a continuous predictor do a substantially better job
accounting for the variability in potentials recorded over the
bilateral posterior scalp around 300 to 500 ms after the onset
of the article than do models that omit this variable. Since
this was not the case during the 1.5 s prior to the article, we
interpreted these results as evidence of a systematic association
between article-cloze probability and scalp potentials generated
by the brain response to the article. The latency, polarity, and
scalp distribution of this article-cloze effect is generally consis-
tent with the association between cloze probability and scalp
potentials (19, 45).

Exploratory investigation of alternatives indicated that evi-
dence for the association does not appear to depend on the
choice of maximal (KIM) or parsimonious (KIP) random effects,

*We thank an anonymous reviewer for suggesting this example.

to be driven by the influence of a subset of unrepresentative
data, or to depend on whether the experiment variable is mod-
eled as a fixed or random effect. That said, the article-cloze
effect appears to be markedly smaller (less variability accounted
for and lower-amplitude slope lmerERPs) than a corresponding
effect at the following word (Figs. 2 and 3, immediately after the
magenta highlight). In this experimental design (. . . a kite . . .),
article-cloze probability is correlated, though not perfectly, with
noun-cloze probability. The larger ∆Mr and lmerERP effects for
the article-cloze predictor variable on the following word are
likely a consequence of this relationship, but cannot be strictly
attributed to the contextually supported nouns because in a sub-
set of materials in experiment 2, a phonologically legal adjective
is interposed between the article and noun, an orange kite. Given
the high proportion of nouns relative to adjectives in the com-
bined data, it is reasonable to suppose that modeling potentials
elicited by the nouns with noun cloze as a predictor variable
would find similar, if not larger, effects, but testing this specu-
lation is tangential to the present aims and beyond the scope of
this report. Although the comparison is imperfect, in all of the
models investigated, the magnitude of the transient article-cloze
rERP response at the article was smaller than at the follow-
ing word. In this respect, the pattern is consistent with other
studies that recruit sequential-dependency experimental designs
to test for prediction in language comprehension and report
relatively small and variable ERP effects at the probe word
(8, 9, 11–14, 16, 17).

LMER modeling the single-trial data for each experiment sep-
arately found that article-cloze slope lmerERPs for all three
experiments showed a biphasic positive response following the
article, similar to that observed for the pooled data, albeit more
variable. The AIC ∆M patterns for the individual experiment
pairwise model comparisons were similar to the pooled data for
two of the datasets, experiment 2 and experiment 3 to a lesser
extent, but not experiment 1. This is not entirely surprising,
since there are roughly twice as many single-trial observations
in experiments 2 and 3 as in experiment 1 (Table 1). It may
be that the two-part stimulus presentation procedure and/or the
additional materials developed for experiments 2 and 3 afford
a better opportunity to observe a small article-cloze effect with
a single-trial LMER analysis than do the procedures and mate-
rials used for the DUK05 study. While the rERP modeling
does not show clear evidence of an article effect for the exper-
iment 1 data considered on their own, the findings are consistent
with the stronger support provided by the replication and exten-
sion studies that followed. We also modeled single-trial mean
amplitude in the postarticle intervals 200 to 500 ms and 300 to
500 ms with the same KIM and KIP LMER models used for the
time-course modeling. The choice of KIM vs. KIP model and
choice of measurement relative to a shorter (100 ms) vs. longer
(500 ms) prestimulus baseline interval had a negligible impact
on the results, but in all cases, the magnitude of the article-cloze
effect was markedly smaller for the 200- to 500-ms poststimulus
interval.

Taken together, this pattern of findings may be relevant to
understanding the failure to observe an effect of article cloze
reported in NIET18. That study tested only the smaller set of
a/an items and single-sentence rapid serial visual presentation
(RSVP) used for the study reported in DUK05 (experiment 1 in
this report), whereas we found that the article-cloze effects may
be more readily observed in the followup experiments 2 and 3
with the expanded sets of items and two-part stimulus presenta-
tion. The LMER analyses reported in NIET18 were conducted
on single-trial mean amplitudes in the interval 200- to 500-ms
postarticle, averaged over six centro-parietal electrode locations,
whereas our time-course modeling at each scalp location found
the article-cloze effect to have a more posterior distribution and
somewhat later onset (Figs. 2 and 4). The LMER model pairs
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compared in NIET18 for the likelihood-ratio tests of the null
hypothesis assumed maximal random effects with correlated ran-
dom intercepts and slopes for subjects and items, whereas we
found that in pairwise AIC model comparisons, the article-cloze
effect was, at times, slightly attenuated for the maximal relative
to parsimonious model (Fig. 2, ∆M5r vs. ∆M7r). So, although the
decisions made in conducting and analyzing the study reported
in NIET18 are defensible for purposes of conducting a direct
replication of the DUK05 study, they may be suboptimal for
answering the scientific question of interest about word-form
prediction.

The failure of the NIET18 report to observe a prenominal
cloze probability effect in a much larger data sample with gen-
erally similar design parameters as the DUK05 report raised the
possibility that there is no such systematic relationship between
prenominal article cloze and electrical brain activity at all. This
is the primary research question that our project was designed
to address, using an exploratory-analysis approach. To answer
this specific question, we selected data from experiments similar
to both DUK05 and NIET18: a/an designs testing young adults
reading at two words per second in central vision. This selec-
tion affords meaningful comparisons among the studies, but it
also means that the results do not answer looming secondary
questions about how various experimental variables, such as pre-
sentation rate or age, among others, might impact the model fits
and morphology of article-cloze rERP waveforms. Still less does
the analysis answer broader questions about the generalizabil-
ity of the findings in the way a meta-analysis might. Although
we pooled data across multiple studies, ours is a forensic EEG
data investigation, not a meta-analysis. And, considered in its
entirety, the pattern of results from the lmerERP modeling we
conducted does appear to provide direct evidence of an associa-
tion (quantitative relationship) between prenominal article cloze
and scalp potentials. Of course, the time course, scalp distri-
bution, and polarity of article-cloze slope lmerERPs—i.e., the
estimated β̂cloze coefficients—are key to this interpretation. And,
of course, if a model omits (any) relevant predictor variables,
estimates of the coefficients for variables that are included may
be biased, and, in turn, inferences drawn from the model may
be wrong; we never know with certainty whether a model omits
relevant predictors. Interpreting our findings as evidence of a
structural relation between the predictability of the stimulus and
the brain response it elicits requires the stronger assumption
that there are no serious lurking variables. This caveat applies
to all regression modeling. All of the more reason to systemat-
ically explore the data, “look for what can be seen, even if not
anticipated.” (ref. 48, p. 24).

Conclusions
In contrast with the large-scale null result reported in NIET18,
our moderately large-scale LMER modeling of single-trial EEG
moment-by-moment at 26 scalp locations finds direct empirical
support for an association between the predictability of prenom-
inal indefinite articles and the brain’s response to encountering
them in word-by-word reading. This effect may reasonably be
attributed to prediction of upcoming word forms in answer
to the question of scientific interest. The exploratory model-
ing reported herein illustrates an approach to experimental
EEG data analysis that may prove a useful complement to
confirmatory null hypothesis testing.

Materials and Methods
Methods. All normative stimulus testing and EEG studies were conducted
under human-subjects research protocols approved by the University of Cal-
ifornia, San Diego Institutional Review Board. Volunteers were recruited by
flyer and through the campus subject pool. Upon their arrival at the labora-
tory, the experimental procedures were explained verbally, and participants
were presented with a printed consent form describing the procedures and

potential risks. Individuals who elected to participate in the study provided
their written informed consent and received 2 h of course credit, cash pay-
ment, or a combination, at their discretion. The normative predictability
of the critical prenominal indefinite articles and nouns was operationally
defined as the relative frequency of production in a sentence-fragment-
completion task (cloze probability) in separate testing with individuals who
did not participate in the EEG experiments. Participants in the EEG stud-
ies were healthy, young-adult, right-handed native English speakers. Salient
differences between the EEG experiments included the number of partici-
pants and experimental items (Table 1), the presentation mode (one vs. two
sentences per trial), experimental conditions (± prenominal adjectives, ±
filler items), counterbalancing scheme, the distribution of cloze probabil-
ities, and normative plausibility of critical nouns (SI Appendix, Table S1).
In all three EEG experiments, sentences containing the critical prenominal
articles were read word-by-word at a fixed rate of approximately two per
second, and the EEG data-acquisition and data-processing procedures were
the same (SI Appendix, EEG Recording and Data Processing). Prior to mod-
eling, the EEG data were visually screened for artifacts, smoothed (25-Hz
low-pass phase-compensated finite impulse response filter), downsampled
to 125 samples per second, centered by subtracting the mean of the 1,496-
ms prestimulus interval for each channel, and rescreened for EEG artifacts
by computer algorithm (see SI Appendix, EEG Experimental Procedures for
details and (OSF: udck19 pipeline 1.html; https://osf.io/y2wa3/) for exclusions
tabulated by experiment, participant, and item).

LMER Model Fitting. For the data pooled across the three experiments, each
observation was coded for the experiment, subject, and stimulus item. Each
item corresponded to the context prior to the critical article and provided
one cloze value for a and one for an (see SI Appendix, Fig. S2 for the dis-
tributions of article cloze across and within each design). Prior to modeling
the EEG, the article-cloze predictor variable was scaled from proportions
of response (0.0 to 1.0) to standardized units (“z scores”) by centering
and dividing by the SD. The 1.2e4 screened single-trial EEG epochs were
stacked into a dataframe (4.5e6 rows = 1.2e4 epochs × 375 samples per
epoch), with each row indexed for epoch and time-stamped relative to arti-
cle onset, with the experiment, subject, item, standardized cloze values,
and the 26 EEG channels in columns. To model these single-trial data, we
used fitgrid (49), an open-source Python package we developed in the lab-
oratory that implements mixed-effects model fitting via the pymer4 (50)
interface to the lmerTest (51) and lme4 (39) R packages (52). With fit-
grid, we swept each LMER model in Table 2 across 3-s epochs of data
with the critical article in the middle (375 time points, 8-ms intervals = 125
samples per second; 26 electrode locations spaced about 5 cm apart) and
collected the lme4::lmer() profiled ML fits (REML = FALSE) in a tabular grid.
From this grid of model fits, we extracted summary measures returned by
lmerTest::lmer() for the fit at each time and channel, including AIC, β̂j esti-
mates for the intercept and article-cloze lmerERPs and their 95% Wald CIs,
and fitting algorithm warnings (ref. 49; fitgrid.lmer). The β̂cloze lmerERPs
in Fig. 3B and interval mean amplitude coefficients in Fig. 4 for standard-
ized cloze may be converted to coefficients B̂cloze on the original cloze
scale (µV/cloze) as B̂cloze = β̂cloze/SDcloze with the article cloze SD values in
Table 1.

Data Availability. Stimulus materials, aggregated behavioral and EEG data,
summary measures, data-analysis software, and reproduction recipe are
deposited in the Open Science Foundation repository OSF: UDCK (38)
and licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License, which may be viewed here:
http://creativecommons.org/licenses/by-nc-nd/4.0. Behavioral and EEG data
related to an identifiable natural person are maintained under control of
the principal investigator M.K. and co-investigators. Contact the correspond-
ing author for information about further use of the research materials or for
access to privacy-sensitive data under a written data-sharing agreement.
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